1
|
Sabnis GS, Churchill GA, Kumar V. Machine vision based frailty assessment for genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617922. [PMID: 39464131 PMCID: PMC11507677 DOI: 10.1101/2024.10.13.617922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Frailty indexes (FIs) capture health status in humans and model organisms. To accelerate our understanding of biological aging and carry out scalable interventional studies, high-throughput approaches are necessary. We previously introduced a machine vision-based visual frailty index (vFI) that uses mouse behavior in the open field to assess frailty using C57BL/6J (B6J) data. Aging trajectories are highly genetic and are frequently modeled in genetically diverse animals. In order to extend the vFI to genetically diverse mouse populations, we collect frailty and behavior data on a large cohort of aged Diversity Outbred (DO) mice. Combined with previous data, this represents one of the largest video-based aging behavior datasets to date. Using these data, we build accurate predictive models of frailty, chronological age, and even the proportion of life lived. The extension of automated and objective frailty assessment tools to genetically diverse mice will enable better modeling of aging mechanisms and enable high-throughput interventional aging studies.
Collapse
Affiliation(s)
| | | | - Vivek Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| |
Collapse
|
2
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Smarr MM, Avakian M, Lopez AR, Onyango B, Amolegbe S, Boyles A, Fenton SE, Harmon QE, Jirles B, Lasko D, Moody R, Schelp J, Sutherland V, Thomas L, Williams CJ, Dixon D. Broadening the Environmental Lens to Include Social and Structural Determinants of Women's Health Disparities. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:15002. [PMID: 38227347 PMCID: PMC10790815 DOI: 10.1289/ehp12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Due to the physical, metabolic, and hormonal changes before, during, and after pregnancy, women-defined here as people assigned female at birth-are particularly susceptible to environmental insults. Racism, a driving force of social determinants of health, exacerbates this susceptibility by affecting exposure to both chemical and nonchemical stressors to create women's health disparities. OBJECTIVES To better understand and address social and structural determinants of women's health disparities, the National Institute of Environmental Health Sciences (NIEHS) hosted a workshop focused on the environmental impacts on women's health disparities and reproductive health in April 2022. This commentary summarizes foundational research and unique insights shared by workshop participants, who emphasized the need to broaden the definition of the environment to include upstream social and structural determinants of health. We also summarize current challenges and recommendations, as discussed by workshop participants, to address women's environmental and reproductive health disparities. DISCUSSION The challenges related to women's health equity, as identified by workshop attendees, included developing research approaches to better capture the social and structural environment in both human and animal studies, integrating environmental health principles into clinical care, and implementing more inclusive publishing and funding approaches. Workshop participants discussed recommendations in each of these areas that encourage interdisciplinary collaboration among researchers, clinicians, funders, publishers, and community members. https://doi.org/10.1289/EHP12996.
Collapse
Affiliation(s)
- Melissa M. Smarr
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | | | | - Sara Amolegbe
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Abee Boyles
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Suzanne E. Fenton
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Quaker E. Harmon
- Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Bill Jirles
- Office of the Director, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Denise Lasko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Rosemary Moody
- Division of Extramural Research, National Institute on Drug Abuse, Bethesda, Maryland, USA
| | - John Schelp
- Office of the Director, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Vicki Sutherland
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Laura Thomas
- Division of Translational Research, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Carmen J. Williams
- Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Darlene Dixon
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| |
Collapse
|
5
|
Moran MM, Ko FC, Mesner LD, Calabrese GM, Al-Barghouthi BM, Farber CR, Sumner DR. Intramembranous bone regeneration in diversity outbred mice is heritable. Bone 2022; 164:116524. [PMID: 36028119 PMCID: PMC9798271 DOI: 10.1016/j.bone.2022.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022]
Abstract
There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Larry D Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Basel M Al-Barghouthi
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Quantitative trait mapping in Diversity Outbred mice identifies novel genomic regions associated with the hepatic glutathione redox system. Redox Biol 2021; 46:102093. [PMID: 34418604 PMCID: PMC8385155 DOI: 10.1016/j.redox.2021.102093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 11/01/2022] Open
Abstract
The tripeptide glutathione (GSH) is instrumental to antioxidant protection and xenobiotic metabolism, and the ratio of its reduced and oxidized forms (GSH/GSSG) indicates the cellular redox environment and maintains key aspects of cellular signaling. Disruptions in GSH levels and GSH/GSSG have long been tied to various chronic diseases, and many studies have examined whether variant alleles in genes responsible for GSH synthesis and metabolism are associated with increased disease risk. However, past studies have been limited to established, canonical GSH genes, though emerging evidence suggests that novel loci and genes influence the GSH redox system in specific tissues. The present study marks the most comprehensive effort to date to directly identify genetic loci associated with the GSH redox system. We employed the Diversity Outbred (DO) mouse population, a model of human genetics, and measured GSH and the essential redox cofactor NADPH in liver, the organ with the highest levels of GSH in the body. Under normal physiological conditions, we observed substantial variation in hepatic GSH and NADPH levels and their redox balances, and discovered a novel, significant quantitative trait locus (QTL) on murine chromosome 16 underlying GSH/GSSG; bioinformatics analyses revealed Socs1 to be the most likely candidate gene. We also discovered novel QTL associated with hepatic NADP+ levels and NADP+/NADPH, as well as unique candidate genes behind each trait. Overall, these findings transform our understanding of the GSH redox system, revealing genetic loci that govern it and proposing new candidate genes to investigate in future mechanistic endeavors.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Melia T, Waxman DJ. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in Diversity Outbred mice. PLoS One 2020; 15:e0242665. [PMID: 33264334 PMCID: PMC7710091 DOI: 10.1371/journal.pone.0242665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many long non-coding RNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sorkin BC, Kuszak AJ, Bloss G, Fukagawa NK, Hoffman FA, Jafari M, Barrett B, Brown PN, Bushman FD, Casper S, Chilton FH, Coffey CS, Ferruzzi MG, Hopp DC, Kiely M, Lakens D, MacMillan JB, Meltzer DO, Pahor M, Paul J, Pritchett-Corning K, Quinney SK, Rehermann B, Setchell KD, Sipes NS, Stephens JM, Taylor DL, Tiriac H, Walters MA, Xi D, Zappalá G, Pauli GF. Improving natural product research translation: From source to clinical trial. FASEB J 2020; 34:41-65. [PMID: 31914647 PMCID: PMC7470648 DOI: 10.1096/fj.201902143r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
While great interest in health effects of natural product (NP) including dietary supplements and foods persists, promising preclinical NP research is not consistently translating into actionable clinical trial (CT) outcomes. Generally considered the gold standard for assessing safety and efficacy, CTs, especially phase III CTs, are costly and require rigorous planning to optimize the value of the information obtained. More effective bridging from NP research to CT was the goal of a September, 2018 transdisciplinary workshop. Participants emphasized that replicability and likelihood of successful translation depend on rigor in experimental design, interpretation, and reporting across the continuum of NP research. Discussions spanned good practices for NP characterization and quality control; use and interpretation of models (computational through in vivo) with strong clinical predictive validity; controls for experimental artefacts, especially for in vitro interrogation of bioactivity and mechanisms of action; rigorous assessment and interpretation of prior research; transparency in all reporting; and prioritization of research questions. Natural product clinical trials prioritized based on rigorous, convergent supporting data and current public health needs are most likely to be informative and ultimately affect public health. Thoughtful, coordinated implementation of these practices should enhance the knowledge gained from future NP research.
Collapse
Affiliation(s)
- Barbara C. Sorkin
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Gregory Bloss
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, US
| | | | | | | | | | - Paula N. Brown
- British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | | | - Steven Casper
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), Hyattsville, MD, US
| | - Floyd H. Chilton
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ, US
| | | | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, US
| | - D. Craig Hopp
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, US
| | - Mairead Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Daniel Lakens
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | | | - Jeffrey Paul
- Drexel Graduate College of Biomedical Sciences, College of Medicine, Evanston, IL, US
| | | | | | - Barbara Rehermann
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, US
| | | | - Nisha S. Sipes
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, US
| | | | | | - Hervé Tiriac
- University of California, San Diego, La Jolla, CA, US]
| | - Michael A. Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, US
| | - Dan Xi
- Office of Cancer Complementary and Alternative Medicine, National Cancer Institute, NIH, Shady Grove, MD, US
| | | | - Guido F. Pauli
- CENAPT and PCRPS, University of Illinois at Chicago College of Pharmacy, Chicago, IL, US
| |
Collapse
|
10
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
11
|
Verhein KC, Vellers HL, Kleeberger SR. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mamm Genome 2018; 29:38-47. [PMID: 29353387 PMCID: PMC5851710 DOI: 10.1007/s00335-018-9733-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Respiratory infectious diseases resulting from bacterial or viral pathogens such as Mycobacterium tuberculosis, Streptococcus pneumoniae, respiratory syncytial virus (RSV), or influenza, are major global public health concerns. Lower respiratory tract infections are leading causes of morbidity and mortality, only behind ischemic heart disease and stroke (GBD 2015 LRI Collaborators in Lancet Infect Dis 17(11):1133–1161, 2017). Developing countries are particularly impacted by these diseases. However, while many are infected with viruses such as RSV (> 90% of all individuals are infected by age 2), only sub-populations develop severe disease. Many factors may contribute to the inter-individual variation in response to respiratory infections, including gender, age, socioeconomic status, nutrition, and genetic background. Association studies with functional single nucleotide polymorphisms in biologically plausible gene candidates have been performed in human populations to provide insight to the molecular genetic contribution to pulmonary infections and disease severity. In vitro cell models and genome-wide association studies in animal models of genetic susceptibility to respiratory infections have also identified novel candidate susceptibility genes, some of which have also been found to contribute to disease susceptibility in human populations. Genetic background may also contribute to differential efficacy of vaccines against respiratory infections. Development of new genetic mouse models such as the collaborative cross and diversity outbred mice should provide additional insight to the mechanisms of genetic susceptibility to respiratory infections. Continued investigation of susceptibility factors should provide insight to novel strategies to prevent and treat disease that contributes to global morbidity and mortality attributed to respiratory infections.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Building 101, Rm. D240, Research Triangle Park, NC, 27709, USA.
| | - Heather L Vellers
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Steven R Kleeberger
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Lutz C. Mouse models of ALS: Past, present and future. Brain Res 2018; 1693:1-10. [PMID: 29577886 DOI: 10.1016/j.brainres.2018.03.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
Genome sequencing of both sporadic and familial patients of Amyotrophic Lateral Sclerosis (ALS) has led to the identification of new genes that are both contributing and causative in the disease. This gene discovery has come at an unprecedented rate, and much of it in recent years. Knowledge of these genetic mutations provides us with opportunities to uncover new and related mechanisms, increasing our understanding of the disease and bringing us closer to defined therapies for patients. Mouse models have played an important role in our current understanding of the pathophysiology of ALS and have served as important preclinical models in testing new therapeutics. With these new gene discoveries, new mouse models will follow. The information derived from these new models will depend on the careful construction and importantly, an understanding of the capabilities and limitations of each of the models. The genetic discovery in ALS comes at a time when genetic engineering technologies in mice are highly efficient through CRISPR/Cas9 and can be applied to a wide array of genetic backgrounds. New mouse resources in the forms of the Collaborative Cross and Diversity Outbred panels provide us with unique opportunities to study these mutations on diverse genetic backgrounds, and importantly in the context of a population. This review focuses on the mouse models of the past and present, and discusses exciting new opportunities for mouse models of the future.
Collapse
Affiliation(s)
- Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
13
|
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29:48-62. [PMID: 29356897 PMCID: PMC5851699 DOI: 10.1007/s00335-017-9732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.
Collapse
Affiliation(s)
- Heather L Vellers
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Schmidt CW. Maiden Voyage of the Collaborative Cross Mouse: Exploring Variability in Animals' Response to Perchloroethylene. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:074001. [PMID: 28743677 PMCID: PMC5744696 DOI: 10.1289/ehp2100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
|
15
|
Genome-wide identification of inter-individually variable DNA methylation sites improves the efficacy of epigenetic association studies. NPJ Genom Med 2017; 2:11. [PMID: 29263827 PMCID: PMC5677974 DOI: 10.1038/s41525-017-0016-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Epigenome-wide association studies, which searches for blood-based DNA methylation signatures associated with environmental exposures and/or disease susceptibilities, is a promising approach to a better understanding of the molecular aetiology of common diseases. To carry out large-scale epigenome-wide association studies while avoiding false negative detection, an efficient strategy to determine target CpG sites for microarray-based or sequencing-based DNA methylation profiling is essentially needed. Here, we propose and validate a hypothesis that a strategy focusing on CpG sites with high DNA methylation level variability may attain an improved efficacy. Through whole-genome bisulfite sequencing of purified blood cells collected from > 100 apparently healthy subjects, we identified ~2.0 million inter-individually variable CpG sites as potential targets. The efficacy of our strategy was estimated to be 3.7-fold higher than that of the most frequently used strategy. Our catalogue of inter-individually variable CpG sites will accelerate the discovery of clinically relevant DNA methylation biomarkers in future epigenome-wide association studies.
Collapse
|
16
|
Schoenrock SA, Tarantino LM. Developmental vitamin D deficiency and schizophrenia: the role of animal models. GENES BRAIN AND BEHAVIOR 2016; 15:45-61. [PMID: 26560996 DOI: 10.1111/gbb.12271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a debilitating neuropsychiatric disorder that affects 1% of the US population. Based on twin and genome-wide association studies, it is clear that both genetics and environmental factors increase the risk for developing schizophrenia. Moreover, there is evidence that conditions in utero, either alone or in concert with genetic factors, may alter neurodevelopment and lead to an increased risk for schizophrenia. There has been progress in identifying genetic loci and environmental exposures that increase risk, but there are still considerable gaps in our knowledge. Furthermore, very little is known about the specific neurodevelopmental mechanisms upon which genetics and the environment act to increase disposition to developing schizophrenia in adulthood. Vitamin D deficiency during the perinatal period has been hypothesized to increase risk for schizophrenia in humans. The developmental vitamin D (DVD) deficiency hypothesis of schizophrenia arises from the observation that disease risk is increased in individuals who are born in winter or spring, live further from the equator or live in urban vs. rural settings. These environments result in less exposure to sunlight, thereby reducing the initial steps in the production of vitamin D. Rodent models have been developed to characterize the behavioral and developmental effects of DVD deficiency. This review focuses on these animal models and discusses the current knowledge of the role of DVD deficiency in altering behavior and neurobiology relevant to schizophrenia.
Collapse
Affiliation(s)
- S A Schoenrock
- Department of Psychiatry, School of Medicine, Chapel Hill, NC, USA.,Neurobiology Curriculum, Chapel Hill, NC, USA
| | - L M Tarantino
- Department of Psychiatry, School of Medicine, Chapel Hill, NC, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Wright RO, Christiani DC, Kile ML. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics 2016; 10:1054-63. [PMID: 26646901 DOI: 10.1080/15592294.2015.1105424] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to arsenic early in life has been associated with increased risk of several chronic diseases and is believed to alter epigenetic programming in utero. In the present study, we evaluate the epigenome-wide association of arsenic exposure in utero and DNA methylation in placenta (n = 37), umbilical artery (n = 45) and human umbilical vein endothelial cells (HUVEC) (n = 52) in a birth cohort using the Infinium HumanMethylation450 BeadChip array. Unadjusted and cell mixture adjusted associations for each tissue were examined along with enrichment analyses relative to CpG island location and omnibus permutation tests of association among biological pathways. One CpG in artery (cg26587014) and 4 CpGs in placenta (cg12825509; cg20554753; cg23439277; cg21055948) reached a Bonferroni adjusted level of significance. Several CpGs were differentially methylated in artery and placenta when controlling the false discovery rate (q-value<0.05), but none in HUVEC. Enrichment of hypomethylated CpG islands was observed for artery while hypermethylation of open sea regions were present in placenta relative to prenatal arsenic exposure. The melanogenesis pathway was differentially methylated in artery (Max F P < 0.001), placenta (Max F P < 0.001), and HUVEC (Max F P = 0.02). Similarly, the insulin-signaling pathway was differentially methylated in artery (Max F P = 0.02), placenta (Max F P = 0.02), and HUVEC (Max F P = 0.02). Our results show that prenatal arsenic exposure can alter DNA methylation in artery and placenta but not in HUVEC. Further studies are needed to determine if these alterations in DNA methylation mediate the effect of prenatal arsenic exposure and health outcomes later in life.
Collapse
Affiliation(s)
- Andres Cardenas
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | - E Andres Houseman
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | | | | | | | | | - Robert O Wright
- d Preventative Medicine and Pediatrics; Mt Sinai School of Medicine ; New York , NY USA
| | | | - Molly L Kile
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| |
Collapse
|
18
|
Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, Marsit CJ. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015; 10:508-15. [PMID: 25923418 DOI: 10.1080/15592294.2015.1046026] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mercury and arsenic are known developmental toxicants. Prenatal exposures are associated with adverse childhood health outcomes that could be in part mediated by epigenetic alterations that may also contribute to altered immune profiles. In this study, we examined the association between prenatal mercury exposure on both DNA methylation and white blood cell composition of cord blood, and evaluated the interaction with prenatal arsenic exposure. A total of 138 mother-infant pairs with postpartum maternal toenail mercury, prenatal urinary arsenic concentrations, and newborn cord blood were assessed using the Illumina Infinium Methylation450 array. White blood cell composition was inferred from DNA methylation measurements. A doubling in toenail mercury concentration was associated with a 2.5% decrease (95% CI: 5.0%, 1.0%) in the estimated monocyte proportion. An increase of 3.5% (95% CI: 1.0, 7.0) in B-cell proportion was observed for females only. Among the top 100 CpGs associated with toenail mercury levels (ranked on P-value), there was a significant enrichment of loci located in North shore regions of CpG islands (P = 0.049), and the majority of these loci were hypermethylated (85%). Among the top 100 CpGs for the interaction between arsenic and mercury, there was a greater than expected proportion of loci located in CpG islands (P = 0.045) and in South shore regions (P = 0.009) and all of these loci were hypermethylated. This work supports the hypothesis that mercury may be contributing to epigenetic variability and immune cell proportion changes, and suggests that in utero exposure to mercury and arsenic, even at low levels, may interact to impact the epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR , USA
| | | | | | | | | | | | | |
Collapse
|