1
|
Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 2019; 5:134-144. [PMID: 29411302 DOI: 10.1007/s40572-018-0184-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Exposure to inorganic arsenic (iAs) via drinking water represents a significant global public health threat with chronic exposure associated with cancer, skin lesions, neurological impairment, and cardiovascular diseases. Particularly susceptible populations include the developing fetus and young children. This review summarizes some of the critical studies of the long-term health effects and underlying biological mechanisms related to developmental exposure to arsenic. It also highlights the complex factors, such as the sex of the exposed individual, that contribute to susceptibility to the later life health effects of iAs. RECENT FINDINGS Studies in animal models, as well as human population-based studies, have established that prenatal and early life iAs exposures are associated with long-term effects, and many of these effects display sexually dimorphic responses. As an underlying molecular basis, recent epidemiologic and toxicologic studies have demonstrated that changes to the epigenome may play a key mechanistic role underlying many of the iAs-associated health outcomes. Developmental exposure to iAs results in early and later life health effects. Mechanisms underlying these outcomes are likely complex, and include disrupted key biological pathways with ties to the epigenome. This highlights the importance of continued research, particularly in animal models, to elucidate the important underpinnings (e.g., timing of exposure, metabolism, dose) of these complex health outcomes and to identify the biological mechanisms underlying sexual dimorphism in iAs-associated diseases. Future research should investigate preventative strategies for the protection from the detrimental health endpoints associated with early life exposure to iAs. Such strategies could include potential interventions focused on dietary supplementation for example the adoption of a folate-rich diet.
Collapse
|
2
|
Huang MC, Douillet C, Dover EN, Stýblo M. Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Arch Toxicol 2018; 92:1925-1937. [PMID: 29721587 DOI: 10.1007/s00204-018-2206-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA
| | - Ellen N Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: impaired lipid metabolism and intestinal dysbiosis. Arch Toxicol 2018. [DOI: 10.1007/s00204-018-2177-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Renu K, Madhyastha H, Madhyastha R, Maruyama M, Arunachlam S, V.G. A. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett 2018; 284:86-95. [DOI: 10.1016/j.toxlet.2017.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
|
5
|
Murko M, Elek B, Styblo M, Thomas DJ, Francesconi KA. Dose and Diet - Sources of Arsenic Intake in Mouse in Utero Exposure Scenarios. Chem Res Toxicol 2018; 31:156-164. [PMID: 29244955 PMCID: PMC6611170 DOI: 10.1021/acs.chemrestox.7b00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In humans, early life exposure to inorganic arsenic is associated with adverse health effects. Inorganic arsenic in utero or in early postnatal life also produces adverse health effects in offspring of pregnant mice that consumed drinking water containing low part per billion levels of inorganic arsenic. Because aggregate exposure of pregnant mice to inorganic arsenic from both drinking water and food has not been fully evaluated in experimental studies, quantifying arsenic exposure of the developing mouse is problematic. Here, we determined levels of total arsenic and arsenic species in natural ingredient rodent diets that are composed of many plant and animal-derived foodstuffs and in a purified ingredient rodent diet that is composed of a more restricted mixture of foodstuffs. In natural ingredient diets, total arsenic levels ranged from ∼60 to ∼400 parts per billion, and in the purified ingredient diet, total arsenic level was 13 parts per billion. Inorganic arsenic was the predominant arsenic species in trifluoroacetic acid extracts of each diet. Various exposure scenarios were evaluated using information on inorganic arsenic levels in diet and drinking water and on daily food and water consumption of pregnant mice. In a scenario in which pregnant mice consumed drinking water with 10 parts per billion of inorganic arsenic and a natural ingredient diet containing 89 parts per billion of inorganic arsenic, drinking water contributed only ∼20% of inorganic arsenic intake. Quantitation of arsenic species in diets used in studies in which drinking water is the nominal source of arsenic exposure provides more accurate dosimetry and improves understanding of dose-response relations. Use of purified ingredient diets will minimize the discrepancy between the target dosage level and the actual dosage level attained in utero exposure studies designed to evaluate effects of low level exposure to inorganic arsenic.
Collapse
Affiliation(s)
- Manuela Murko
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina 27719, United States
| | - David J. Thomas
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | | |
Collapse
|
6
|
Ahangarpour A, Alboghobeish S, Rezaei M, Khodayar MJ, Oroojan AA, Zainvand M. Evaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:164-183. [PMID: 29755549 PMCID: PMC5937088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As) can produce diabetic symptoms. In previous studies, the association between high-fat diet and arsenic in the incidence of diabetes was found, but the role of beta cells activity, liver mitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase) was unclear. Thus, present study was conducted to evaluate the diabetogenic mechanism of arsenic followed by concomitant administration of high-fat diet (HFD) in male mice. In this experimental study, the mice consumed with HFD or low-fat diet (LFD) while exposed to As 25 or 50 ppm in drinking water for 20 weeks. At the end of experiments, hyperglycemia, insulin resistance variables, lipid profile, hepatic enzymes, liver mitochondrial oxidative stress, islet insulin secretion, liver, and pancreas histopathology were evaluated in all mice by their own methods. Control HFD fed mice showed a significant increase in FBG, OGTT, HOMA-IR, ITT, lipid profile, leptin, β-amylase, liver mitochondrial oxidative stress, hepatic enzymes and decreased FPI, HOMA-β, adiponectin, and islet insulin secretion or content. However, exposure to HFD concomitant with Arsenic revealed an impressive reduction in FBG, FPI, HOMA-IR, HOMA-β, ITT, lipid profile, and islet insulin secretion or content. This exposure enhanced OGTT, leptin, adiponectin, liver mitochondrial oxidative stress, and hepatic enzymes. In conclusion, HFD and arsenic concomitant administration induced impairment of OGTT and islet insulin secretion or content through the mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. ,Corresponding author: E-mail:
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Javad Khodayar
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Akbar Oroojan
- Department of Physiology, Student Research Committee of Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| | - Marzieh Zainvand
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals. Curr Environ Health Rep 2017; 4:208-222. [PMID: 28432637 DOI: 10.1007/s40572-017-0137-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Environmental toxicants are increasingly implicated in the global decline in metabolic health. Focusing on diabetes, herein, the molecular and cellular mechanisms by which metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed. RECENT FINDINGS Emerging data implicate MDC perturbations in a variety of pathways as contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and future MDC research. Increasing evidence also implicates deleterious effects of MDCs on metabolic programming that occur during vulnerable developmental windows, such as in utero and early post-natal life as well as pregnancy. Recent insights into the mechanisms by which MDCs alter energy homeostasis will advance the field's ability to predict interactions with classical metabolic disease risk factors and empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.
Collapse
|
8
|
Nohara K, Suzuki T, Okamura K, Matsushita J, Takumi S. Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice. Genes Environ 2017; 39:3. [PMID: 28265304 PMCID: PMC5331735 DOI: 10.1186/s41021-016-0069-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 02/08/2023] Open
Abstract
The consequences of early-life exposure to chemicals in the environment are emerging concerns. Chronic exposure to naturally occurring inorganic arsenic has been known to cause various adverse health effects, including cancers, in humans. On the other hand, animal studies by Dr. M. Waalkes’ group reported that arsenite exposure of pregnant F0 females, only from gestational day 8 to 18, increased hepatic tumors in the F1 (arsenite-F1) males of C3H mice, whose males tend to develop spontaneous hepatic tumors later in life. Since this mice model illuminated novel unidentified consequences of arsenic exposure, we wished to further investigate the background mechanisms. In the same experimental model, we identified a variety of factors that were affected by gestational arsenic exposure, including epigenetic and genetic changes, as possible constituents of multiple steps of late-onset hepatic tumor augmentation in arsenite-F1 males. Furthermore, our study discovered that the F2 males born to arsenite-F1 males developed hepatic tumors at a significantly higher rate than the control F2 males. The results imply that the tumor augmenting effect is inherited by arsenite-F2 males through the sperm of arsenite-F1. In this article, we summarized our studies on the consequences of gestational arsenite exposure in F1 and F2 mice to discuss novel aspects of biological effects of gestational arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Junya Matsushita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan.,Graduate School of Pharmaceutical Science, Tokyo University of Science, Noda, 278-8510 Japan
| | - Shota Takumi
- Department of Domestic Science, Kagoshima Women's College, Kagoshima, 890-8565 Japan
| |
Collapse
|
9
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 661] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
10
|
Bogen KT, Arnold LL, Chowdhury A, Pennington KL, Cohen SM. Low-dose dose-response for reduced cell viability after exposure of human keratinocyte (HEK001) cells to arsenite. Toxicol Rep 2016; 4:32-38. [PMID: 28959622 PMCID: PMC5615095 DOI: 10.1016/j.toxrep.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/01/2016] [Accepted: 12/08/2016] [Indexed: 12/21/2022] Open
Abstract
The in vitro arsenite (AsIII) cytotoxicity dose-response (DR) of human keratinocytes (HEK001) was examined at greater statistical resolution than ever previously reported using the MTT assay to determine cell viability. Fifty-four 96-well plates were treated with AsIII concentrations of 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, or 30 μM. Because of unexpected variation in viability response patterns, a two-stage DR analysis was used in which data on plate-specific viability (%), estimated as 100% times the ratio of measured viability in exposed to unexposed cells, were fit initially to a generalized lognormal response function positing that HEK001 cells studied consisted of: a proportion P of relatively highly sensitive (HS) cells, a proportion Po of relatively resistant cells, and a remaining (1-P-Po) fraction of typical-sensitivity (TS) cells exhibiting the intermediate level of AsIII sensitivity characteristic of most cells in each assay. The estimated fractions P and Po were used to adjust data from all 54 plates (and from the 28 plates yielding the best fits) to reflect the condition that P = Po = 0 to provide detailed DR analysis specifically for TS cells. Four DR models fit to the combined adjusted data were each very predictive (R2 > 0.97) overall but were inconsistent with at least one of the data set examined (p < 10-5). Adjusted mean responses at ≤3 μM were approximately equal (p > 0.30) and exceeded 100% significance (p ≤ 10-6). A low-dose hormetic model provided the best fit to the combined adjusted data for TS cells (R2 = 0.995). Marked variability in estimates of P (the proportion of apparent HS cells) was unexpected, not readily explained, and warrants further study using additional cell lines and assay methods, and in vivo.
Collapse
Affiliation(s)
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Karen L. Pennington
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik-Wall Professor of Oncology
| |
Collapse
|
11
|
Bommarito PA, Fry RC. Developmental Windows of Susceptibility to Inorganic Arsenic: A Survey of Current Toxicologic and Epidemiologic Data. Toxicol Res (Camb) 2016; 5:1503-1511. [PMID: 29354260 PMCID: PMC5771659 DOI: 10.1039/c6tx00234j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023] Open
Abstract
Globally, millions of people are exposed to elevated levels of inorganic arsenic (iAs) via drinking water. Exposure to iAs is associated with a wide range of negative health outcomes, including cancers, skin lesions, neurological impairment, cardiovascular diseases, and an increased susceptibility to infection. Among those exposed to iAs, the developing fetus and young children represent particularly sensitive subpopulations. Specifically, it has been noted in animal models and human populations that prenatal and early life iAs exposures are associated with diseases occurring during childhood and later in life. Recent epidemiologic and toxicologic studies have also demonstrated that epigenetic alterations may play a key mechanistic role underlying many of the iAs-associated health outcomes, including the carcinogenic and immunologic effects of exposure. This review summarizes some of the key studies related to prenatal and early life iAs exposure and highlights the complexities in isolating the precise developmental windows of exposure associated with these health outcomes.
Collapse
Affiliation(s)
- P. A. Bommarito
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
| | - R. C. Fry
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
- Curriculum in Toxicology
, School of Medicine
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
| |
Collapse
|