1
|
Xiang T, Liu Y, Guo Y, Zhang J, Liu J, Yao L, Mao Y, Yang X, Liu J, Liu R, Jin X, Shi J, Qu G, Jiang G. Occurrence and Prioritization of Human Androgen Receptor Disruptors in Sewage Sludges Across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10309-10321. [PMID: 38795035 DOI: 10.1021/acs.est.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17β-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan430074, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
2
|
Monnin N, Fattet AJ, Koscinski I. Endometriosis: Update of Pathophysiology, (Epi) Genetic and Environmental Involvement. Biomedicines 2023; 11:biomedicines11030978. [PMID: 36979957 PMCID: PMC10046867 DOI: 10.3390/biomedicines11030978] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Endometriosis is a chronic disease caused by ectopic endometrial tissue. Endometriotic implants induce inflammation, leading to chronic pain and impaired fertility. Characterized by their dependence on estradiol (via estrogen receptor β (ESRβ)) and their resistance to progesterone, endometriotic implants produce their own source of estradiol through active aromatase. Steroidogenic factor-1 (SF1) is a key transcription factor that promotes aromatase synthesis. The expression of SF1 and ESRβ is enhanced by the demethylation of their promoter in progenitor cells of the female reproductive system. High local concentrations of estrogen are involved in the chronic inflammatory environment favoring the implantation and development of endometriotic implants. Similar local conditions can promote, directly and indirectly, the appearance and development of genital cancer. Recently, certain components of the microbiota have been identified as potentially promoting a high level of estrogen in the blood. Many environmental factors are also suspected of increasing the estrogen concentration, especially prenatal exposure to estrogen-like endocrine disruptors such as DES and bisphenol A. Phthalates are also suspected of promoting endometriosis but throughmeans other than binding to estradiol receptors. The impact of dioxin or tobacco seems to be more controversial.
Collapse
Affiliation(s)
- Nicolas Monnin
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Anne Julie Fattet
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Isabelle Koscinski
- Laboratory of Biology of Reproduction, Hospital Saint Joseph, 13008 Marseille, France
- NGERE Inserm 1256, 54505 Vandoeuvre les Nancy, France
| |
Collapse
|
3
|
Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Curr Opin Microbiol 2021; 64:117-124. [PMID: 34700125 DOI: 10.1016/j.mib.2021.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/02/2023]
Abstract
There is evidence that human activity causes pollution that contributes to an enhanced selection of bacterial pathogens in the environment. In this review, we consider how environmental pollution can favour the selection of bacterial pathogens in the environment. We specifically discuss pollutants released into the environment by human activities (mainly human waste) that are associated with the selection for genetic features in environmental bacterial populations that lead to the emergence of bacterial pathogens. Finally, we also identify key pollutants that are associated with antibiotic resistance and discuss possibilities of how to prevent their release into the environment.
Collapse
|
4
|
Weber R, Bell L, Watson A, Petrlik J, Paun MC, Vijgen J. Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:703-715. [PMID: 30933768 DOI: 10.1016/j.envpol.2019.03.066] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination. In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans. Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. 'Safe' soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk). For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist. There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Collapse
Affiliation(s)
- R Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany; International HCH and Pesticide Association, Holte, Denmark.
| | - L Bell
- International POPs Elimination Network (IPEN), Gothenburg, Sweden
| | - A Watson
- Public Interest Consultants, Swansea, Wales, UK
| | - J Petrlik
- International POPs Elimination Network (IPEN), Gothenburg, Sweden; Arnika, Toxics and Waste Programme, Prague, Czech Republic
| | - M C Paun
- Ministry of Environment, Bucharest, Romania
| | - J Vijgen
- International HCH and Pesticide Association, Holte, Denmark
| |
Collapse
|
5
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|
6
|
Brambilla G, Abate V, Battacone G, De Filippis SP, Esposito M, Esposito V, Miniero R. Potential impact on food safety and food security from persistent organic pollutants in top soil improvers on Mediterranean pasture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:581-590. [PMID: 26610287 DOI: 10.1016/j.scitotenv.2015.10.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
The organic carbon of biosolids from civil wastewater treatment plants binds persistent organic pollutants (POPs), such as polychlorodibenzo -dioxins and -furans (PCDD/Fs), dioxin and non-dioxin -like polychlorobiphenyls (DL and NDL-PCBs), polybrominated diphenyl ethers (PBDEs), and perfluorooctane sulfonic acid (PFOS). The use of such biosolids, derived digestates and composts as top soil improvers (TSIs) may transfer POPs into the food chain. We evaluated the potential carry-over of main bioavailable congeners from amended soil-to-milk of extensive farmed sheep. Such estimates were compared with regulatory limits (food security) and human intakes (food safety). The prediction model was based on farming practices, flocks soil intake, POPs toxicokinetics, and dairy products intake in children, of the Mediterranean area. TSI contamination ranged between 0.20-113 ng WHO-TEQ/kg dry matter for PCDD/Fs and DL-PCBs (N = 56), 3.40-616 μg/kg for ∑6 NDL-PCBs (N = 38), 0.06-17.2 and 0.12-22.3 μg/kg for BDE no. 47 and no. 99, 0.872-89.50 μg/kg for PFOS (N = 27). For a 360 g/head/day soil intake of a sheep with an average milk yield of 2.0 kg at 6.5% of fat percentage, estimated soil quality standards supporting milk safety and security were 0.75 and 4.0 ng WHO-TEQ/kg for PCDD/Fs and DL-PCBs, and 3.75 and 29.2 μg/kg for ∑6 NDL-PCBs, respectively. The possibility to use low-contaminated TSIs to maximize agriculture benefits and if the case, to progressively mitigate highly contaminated soils is discussed.
Collapse
Affiliation(s)
- G Brambilla
- Istituto Superiore di sanità, Veterinary Public Health Dept, Viale Regina Elena 299, 00161 Rome, Italy
| | - V Abate
- Istituto Superiore di sanità, Veterinary Public Health Dept, Viale Regina Elena 299, 00161 Rome, Italy
| | - G Battacone
- Università degli Studi di Sassari, Agricultural Science, Viale Italia, 39 07100 Sassari, Italy
| | - S P De Filippis
- Istituto Superiore di sanità, Toxicological Chemistry Unit, Viale Regina Elena 299, 00161 Rome, Italy
| | - M Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 08055 Portici, (Neaples), Italy
| | - V Esposito
- Agenzia Regionale Per la Protezione dell'Ambiente Regione Puglia, Via Anfiteatro 8, 74100 Taranto, Italy
| | - R Miniero
- Istituto Superiore di sanità, Toxicological Chemistry Unit, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
7
|
Takeda N, Takaoka M. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2070-2080. [PMID: 23263763 DOI: 10.1007/s11356-012-1412-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures.
Collapse
Affiliation(s)
- Nobuo Takeda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan 615-8540
| | | |
Collapse
|
8
|
Haro-García L, Villa-Ibarra M, Chaín-Castro TDJ, Lastra-Rodríguez A, Juárez-Pérez CA, Aguilar-Madrid G, Sánchez-Escalante VC, Brito-Zurita OR. Are Mexican agricultural farmlands PCDD/F soil reservoirs? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 88:813-815. [PMID: 22437565 DOI: 10.1007/s00128-012-0526-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Our aim was to identify polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-p-furans (PCDFs) in agricultural farmland soils in the Northwest of Mexico. We obtained ≈50 g of soil in five Yaqui Valley (VY) agricultural fields in the north-western Mexican State of Sonora and in five Culiacán Valley (VC) agricultural fields in the north-western Mexican State of Sinaloa. Fields with minimal tillage, with ferti-irrigation, and those with intensive aerial and manual tillage were included. All soil samples were subjected to the chemical activated luciferase gene expression (CALUX(®)) test to determine PCDD/F. On average, samples contained 4.2 ± 1.2 PCDD/F ppt TEQ; VY soil samples contained 4.72 ± 1.23 PCDD/F ppt TEQ, while VC soil samples showed 3.6 ± 1.1 PCDD/F ppt TEQ (p = 0.47). On considering tillage-type, in agricultural fields catalogued as intensive tillage, PCDD/F concentrations were 4.40 ± 0.43 in agricultural fields catalogued as intensive tillage, while in farmlands of another tillage-type these concentrations were slightly higher (5.53 ± 0.8).
Collapse
Affiliation(s)
- Luis Haro-García
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dumortier P, Elskens M, Focant JF, Goeyens L, Vandermeiren K, Pussemier L. Potential impact of fertilization practices on human dietary intake of dioxins in Belgium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:47-54. [PMID: 22404980 DOI: 10.1016/j.scitotenv.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
Dioxins can enter the food chain at any stage, including crop fertilization. Therefore, we developed a simple method for estimating the introduction of dioxins in the food chain according to various fertilization practices. Using dioxin's contamination data taken from the literature, we estimated that fertilization accounts for approximately 20% of the dioxin inputs on agricultural soils at country scale. For the estimations at the field scale, 6 fertilization scenarios were considered: sludge, compost, digestate, manure, mineral fertilizers, and a common fertilization scenario that corresponds to an average situation in Belgium and combines mineral and organic fertilizers. According to our first estimations, mineral fertilizers, common fertilization practices or manure bring less than 1 ng TEQ/m² while atmospheric deposition or digestate bring between 1 and 3 ng TEQ/m² and sludge or compost bring more than 3 ng TEQ/m². The use of solid fertilizers could potentially increase the dioxin levels in the 30 cm agricultural soil layer by 0 to ~1.5% per year (up to ~9% for the 5 cm thick surface layer). For animals, the increase in dioxin ingestion linked to the fertilization practices is lower than 1% for most scenarios with the exception of the compost scenario. Increases in human dietary intake of dioxin are estimated to be lower than 1% for conventional rearing methods (i.e. grazing animals are reared outdoor while pigs and poultry are reared indoor). Spraying liquid fertilizers on meadows and fodder crops, even if very limited in practice, deserves much more attention because this application method could theoretically lead to higher dioxin's intake by livestock (from 6 to ~300%). Considering an average half-life of dioxins in soils of 13 years, it appears that the risks of accumulation in soils and in the food chain are negligible for the various fertilization scenarios.
Collapse
Affiliation(s)
- P Dumortier
- CODA-CERVA, Veterinary and Agrochemical Research Center, Operational Directorate Chemical safety of the Food Chain, Leuvensesteenweg 17, B-3080 Tervuren, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Scientific Opinion on the risk to public health related to the presence of high levels of dioxins and dioxin‐like PCBs in liver from sheep and deer. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Umlauf G, Christoph EH, Lanzini L, Savolainen R, Skejo H, Bidoglio G, Clemens J, Goldbach H, Scherer H. PCDD/F and dioxin-like PCB profiles in soils amended with sewage sludge, compost, farmyard manure, and mineral fertilizer since 1962. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:461-470. [PMID: 20835891 DOI: 10.1007/s11356-010-0389-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Biowaste contains compounds of agricultural value such as organic carbon, nutrients, and trace elements and can partially replace mineral fertilizer (MIN) and improve the physical properties of the soil. However, the obvious benefits of land spreading need to be carefully evaluated against potential adverse effects on the environment and human health. Environmental contamination resulting from biowaste application is one of the key variables when assessing cost/benefits. This study provides data on the resulting concentration of polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the soil column as a result of the different types of fertilizers. MATERIALS AND METHODS In a long-term field experiment established in 1962, we investigated the influence of the application of biowaste-derived fertilizers such as sewage sludge (SSL), compost (COM), and farmyard manure (FYM) to a luvisol derived from loess on the contents of PCDD/Fs and DL-PCBs. Control plots amended only with MIN served as a basis to compare the biowaste-amended soils with soils affected only by atmospheric deposition, thus experimentally separating the two pathways of soil contamination. Samples of the soil column down to a depth of 90 cm were taken in 2001 and analyzed for PCDD/Fs and dioxin-like PCBs according to US-EPA methods 1613 and 1668, respectively. RESULTS Thirty-nine years of experimental SSL and COM applications exceeding four times the maximal amount as laid down in German legislation resulted in a doubling of the international toxicity equivalent (I-TEQ) budget for PCDD/Fs and a threefold increase for DL-PCBs as compared to test plots amended with MIN only. As compared to MIN, the application of FYM had no effect on the PCDD/F and PCB content in soil. The average contribution of the DL-PCBs to the WHO-TEQ was 19% in the MIN and FYM plots and somewhat higher in the COM (23%) and in the SSL (27%) plots. DISCUSSION Although the test plots received four times the maximum application of SSL as laid down in the German SSL ordinance and the investigated region represents the upper end of the topsoil concentrations typically found in Germany, the soils treated with SSL and COM were still a factor of 4 below the German guideline value of PCDD/Fs for arable land. No enhancement of translocation of PCDD/Fs and PCBs into the corresponding subsoils due to the presence of dissolved humic matter or other surfactants potentially present in the biowaste was observed. The similarity of congener patterns in all soils, irrespective of the type of fertilizer applied, points towards atmospheric deposition of PCDD/Fs and DL-PCBs as the main intake route in the soils. The higher levels in the SSL- and COM-amended soils can be explained by the fact that both biowastes are subject to atmospheric deposition occurring at their origin. In the case of COM, it is accumulation in the foliage, while in the case of SSL, atmospheric particulate from wet and dry deposition is collected in the wastewater treatment system via urban runoff. CONCLUSIONS It appears that the common practice of SSL applications in Germany does not pose a current threat to the agro-environment with regard to PCDD/Fs and DL-PCBs. However, time trend data on PCDD/Fs in SSL-amended soils will be needed to obtain a prognosis about the long-term effect of biowaste applications on soil quality.
Collapse
Affiliation(s)
- Gunther Umlauf
- European Commission, DG - Joint Research Center, Institute of Environment and Sustainability, Via Enrico Fermi 2749, 21027, Ispra, VA, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Francisco Lozano Luvizutto J, de Lourdes Marzo Solano M, Passareli D, Adriene da Silva Franchi C, de Aragão Umbuzeiro G, Lauro Viana de Camargo J. Subchronic toxicity evaluation of a treated urban sewage sludge. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:916-925. [PMID: 20563925 DOI: 10.1080/15287391003745036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Disposal of tons of sludge produced daily by sewage treatment plants in large cities is a serious problem. Because recycling and application in agriculture have been proposed, the Brazilian National Environmental Council (CONAMA, 2006) issued a legal norm that regulates the use of the sewage sludge (SS) in crops. Due to the complex chemical nature of such products, characterization by analytical methods for health and environmental risk assessment has severe limitations. To overcome such limitations, it is necessary to (1) assess the toxicological potential of SS and (2) identify possible adverse effects in vivo in order to provide critical information for future environmental regulations. The present study was conducted to determine the potential toxicity of SS obtained from a representative urban treatment plant located in the Sao Paulo State, Brazil. Male and female Wistar rats were fed ad libitum a pelleted diet containing varying amounts of SS. No relevant clinical, hematological, urinary, or gross organ morphological alterations were observed in both genders of rats orally exposed to SS at up to 3.8 g/kg/d for 90 d. Sewage slude produced increased incidence of centrilobular hepatocyte hyperplasia at the high dose and significantly increased aspartate aminotransferease (AST) activities at all doses in both genders. Although the present data indicate some liver involvement, these alterations were considered adaptative and not toxicologically relevant, as the responses were relatively mild, not dose dependent, and no other parameters were markedly affected. The present results may contribute to the establishment of protocols for potential usage in SS agricultural soil application.
Collapse
Affiliation(s)
- João Francisco Lozano Luvizutto
- Center for the Evaluation of the Environmental Impact of Human Health, Department of Pathology, Botucatu Medical School, UNESP-Sao Paulo State University, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Guo SW, Simsa P, Kyama CM, Mihalyi A, Fulop V, Othman EER, D'Hooghe TM. Reassessing the evidence for the link between dioxin and endometriosis: from molecular biology to clinical epidemiology. Mol Hum Reprod 2009; 15:609-24. [DOI: 10.1093/molehr/gap075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Kodama S, Okada K, Akimoto K, Inui H, Ohkawa H. Recombinant aryl hydrocarbon receptors for bioassay of aryl hydrocarbon receptor ligands in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:119-28. [PMID: 19055610 DOI: 10.1111/j.1467-7652.2008.00378.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dioxin residues widely contaminate soil and agricultural products at low concentrations and may accumulate in organisms at the top of food chains owing to their physicochemical properties. In this study, we have developed novel, dioxin-inducible, reporter gene expression systems regulated by recombinant aryl hydrocarbon receptors (AhRs). The recombinant AhRs, referred to as XDVs, consist of the DNA-binding domain of the bacterial repressor protein LexA, a 90-kDa heat shock protein- and ligand-binding regulatory domain from mouse AhR, and the transactivation domain of herpes simplex virus regulatory protein VP16. Transgenic tobacco plants carrying XDVs absorb various AhR ligands, including 3-methylcholanthrene, beta-naphthoflavone and indigo from solid medium and vermiculite, and show dose- and time-dependent expression of the beta-glucuronidase reporter gene. The results clearly suggest that XDVs are functional transcription factors that respond to AhR ligands, and that the XDV-mediated reporter gene expression system is applicable to bioassays for dioxin residues in the environment.
Collapse
Affiliation(s)
- Susumu Kodama
- Graduate School of Science and Technology, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Recent advances in the microbial safety of fresh fruits and vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:155-208. [PMID: 19595387 DOI: 10.1016/s1043-4526(09)57004-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Foodborne illness outbreaks linked to fresh produce are becoming more frequent and widespread. High impact outbreaks, such as that associated with spinach contaminated with Escherichia coli O157:H7, resulted in almost 200 cases of foodborne illness across North America and >$300 m market losses. Over the last decade there has been intensive research into gaining an understanding on the interactions of human pathogens with plants and how microbiological safety of fresh produce can be improved. The following review will provide an update on the food safety issues linked to fresh produce. An overview of recent foodborne illness outbreaks linked to fresh produce. The types of human pathogens encountered will be described and how they can be transferred from their normal animal or human host to fresh produce. The interaction of human pathogens with growing plants will be discussed, in addition to novel intervention methods to enhance the microbiological safety of fresh produce.
Collapse
|
16
|
Jones-Lepp TL, Stevens R. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Anal Bioanal Chem 2006; 387:1173-83. [PMID: 17131110 DOI: 10.1007/s00216-006-0942-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/02/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Modern sanitary practices result in large volumes of human waste, as well as domestic and industrial sewage, being collected and treated at common collection points, wastewater treatment plants (WWTPs). In recognition of the growing use of sewage sludge as fertilizers and soil amendments, and the scarcity of current data regarding the chemical constituents in sewage sludge, the US National Research Council (NRC) in 2002 produced a report on sewage sludge. Among the NRC's recommendations was the need for investigating the occurrence of pharmaceuticals and personal care products (PPCPs) in sewage sludge. PPCPs are a diverse array of non-regulated contaminants that had not been studied in previous sewage sludge surveys but which are likely to be present. The focus of this paper will be to review the current analytical methodologies available for investigating whether pharmaceuticals are present in WWTP-produced sewage sludge, to summarize current regulatory practices regarding sewage sludge, and to report on the presence of pharmaceuticals in sewage sludge.
Collapse
Affiliation(s)
- T L Jones-Lepp
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Las Vegas, NV 89193, USA.
| | | |
Collapse
|
17
|
Donato F, Magoni M, Bergonzi R, Scarcella C, Indelicato A, Carasi S, Apostoli P. Exposure to polychlorinated biphenyls in residents near a chemical factory in Italy: the food chain as main source of contamination. CHEMOSPHERE 2006; 64:1562-72. [PMID: 16406051 DOI: 10.1016/j.chemosphere.2005.11.057] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/05/2005] [Accepted: 11/15/2005] [Indexed: 05/06/2023]
Abstract
High levels of PCBs were recently found in soil, food and some farmers living close to a chemical factory which until the 1980s had produced polychlorinated biphenyls (PCBs) in Brescia, North Italy. We performed a survey on a random sample of subjects aged 20-79 years living in various areas of the town with different levels of soil pollution to investigate factors associated with increased levels of PCB in serum (24 congeners were tested). Total PCB values were closely related to age (Spearman r=0.68; p<0.0001). The 166 consumers of locally produced food had higher PCB levels than non-consumers (median=1143 versus 719; 95th centile=9301 versus 2635ng/g lipid) with the highest levels among consumers of food produced in the most contaminated area close to the factory (median=2551; 95th centile=33464ng/g lipid). A dose-effect relationship between consumption of food produced in this area and PCB blood levels was observed (Spearman r=0.52, p=0.0014). Consumers of only plant food produced in this area had higher levels of PCB than non-consumers (median=1100; 95th centile=10,800ng/g lipid). Three subjects who had worked at the factory in the past showed high PCB levels. Distribution of PCB congeners did not differ between consumers of locally produced food and non-consumers, apart from PCB 209 which was found at high levels in former factory workers and was more common among consumers of food produced in the polluted area. In conclusion, we found high serum PCB levels in humans living in a highly polluted area in an industrialized town in Italy, due mainly to consumption of food produced in polluted areas.
Collapse
Affiliation(s)
- Francesco Donato
- Institute of Hygiene, Epidemiology and Public Health, Università di Brescia, Facoltà di Medicina e Chirurgia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Heidler J, Sapkota A, Halden RU. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:3634-3639. [PMID: 16786704 DOI: 10.1021/es052245n10.1021/es052245n.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application of municipal sludge (biosolids) on land used in part for agriculture.
Collapse
Affiliation(s)
- Jochen Heidler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Center for Water and Health, Johns Hopkins University, 615 North Wolfe Street, Room E6618, Baltimore, Maryland 21205-2103, USA
| | | | | |
Collapse
|
19
|
Heidler J, Sapkota A, Halden RU. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:3634-9. [PMID: 16786704 PMCID: PMC2768036 DOI: 10.1021/es052245n] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application of municipal sludge (biosolids) on land used in part for agriculture.
Collapse
Affiliation(s)
| | | | - Rolf U. Halden
- Corresponding author phone: (410) 955-2609; fax (410) 955-9334; . Mailing address: 615 North Wolfe Street, Room E6618, Baltimore, MD 21205-2103
| |
Collapse
|
20
|
Wang SL, Su PH, Jong SB, Guo YL, Chou WL, Päpke O. In utero exposure to dioxins and polychlorinated biphenyls and its relations to thyroid function and growth hormone in newborns. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1645-50. [PMID: 16263525 PMCID: PMC1310932 DOI: 10.1289/ehp.7994] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The aim of this study is to examine the association between transplacental exposure to dioxins/polychlorinated biphenyls (PCBs) and thyroid and growth hormones in newborns. We recruited 118 pregnant women, between 25 and 34 years of age, at the obstetric clinic. Personal data collected included reproductive and medical histories and physical factors. Clinicians gathered placental and umbilical cord serum upon delivery and carefully scored the 118 newborns, making both structural and functional assessments. We analyzed placentas for 17 polychlorinated dibenzo-p-dioxins and dibenzofurans and 12 dioxin-like PCB congeners with the World Health Organization-defined toxic equivalent factors, and six indicator PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. We analyzed thyroid and growth hormones from cord serum using radioimmunoassay. Insulin-like growth factor (IGF)-1, IGF-binding globulin-3, and thyroxine x thyroid-stimulating hormone (T4 x TSH) were significantly associated with increased placental weight and Quetelet index (in kilograms per square meter; correlation coefficient r = 0.2-0.3; p < 0.05). Multivariate analyses showed independently and significantly decreased free T4 (FT4) x TSH with increasing non-ortho PCBs (r = -0.2; p < 0.05). We suggest that significant FT4 feedback alterations to the hypothalamus result from in utero exposure to non-ortho PCBs. Considering the vast existence of bioaccumulated dioxins and PCBs and the resultant body burden in modern society, we suggest routine screening of both thyroid hormone levels and thyroid function in newborns.
Collapse
Affiliation(s)
- Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, and Graduate Institute of Occupational Safety and Health, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
21
|
Hill J. Recycling biosolids to pasture-based animal production systems in Australia: a review of evidence on the control of potentially toxic metals and persistent organic compounds recycled to agricultural land. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ar04264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biosolids from municipal waste water treatment are commonly used in agriculture as a source of nutrients, organic matter, and irrigation. There is, however, concern that the use of biosolids on pasture can lead to an accumulation of potentially toxic metals (PTM) and persistent organic compounds (POC) in the surface layers of soil and associated herbage that can be ingested by grazing livestock. This review examines the following two key questions. Is the use of these materials in an agricultural setting safe and practical? Is the use of biosolids safe in all climates, on all soils, and is it sustainable over the long term? To answer these important questions, the Australian regulatory framework is examined in light of similar legislation in Europe and the United States on the basis of scientific evidence that underpins the published limits, contaminant gradings, annual loadings, and prescribed restrictions on the use of biosolids in agriculture. The review concludes that the regulatory frameworks currently enacted at State level suffer from a lack of data to underpin the risk assessments conducted to prevent transfer of PTM and POC to the human food chain from livestock production and the basis of published thresholds is poorly defined. The important areas of future research are identified as studies on acquisition and transfer of PTM and POC to grazing animals and the subsequent effect of attenuation of the pollutant on the human food chain, the validation and acceptance of methods to quantify POC in biosolids, the effect of recycling of biosolids on the economic performance of pasture-based agriculture, and the market perception of animal products produced from land receiving biosolids.
Collapse
|