1
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Reljic Z, Zlatovic M, Savic-Radojevic A, Pekmezovic T, Djukanovic L, Matic M, Pljesa-Ercegovac M, Mimic-Oka J, Opsenica D, Simic T. Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis. Toxins (Basel) 2014; 6:2348-62. [PMID: 25111321 PMCID: PMC4147586 DOI: 10.3390/toxins6082348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR). Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037). In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates.
Collapse
Affiliation(s)
- Zorica Reljic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Mario Zlatovic
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | | | - Ljubica Djukanovic
- Clinic of Nephrology, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Jasmina Mimic-Oka
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
3
|
Bernstein D, Castranova V, Donaldson K, Fubini B, Hadley J, Hesterberg T, Kane A, Lai D, McConnell EE, Muhle H, Oberdorster G, Olin S, Warheit DB. Testing of Fibrous Particles: Short-Term Assays and Strategies. Inhal Toxicol 2008; 17:497-537. [PMID: 16040559 DOI: 10.1080/08958370591001121] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Tvinnereim HM, Eide R, Fosse G, Wesenberg GR, Sz⊘ke J, Banoczy J. Trace elements in primary teeth from six areas in Hungary. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/00207239608711063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 2006; 90:23-32. [PMID: 16396841 DOI: 10.1093/toxsci/kfj084] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dissolution, translocation, and disposition have been shown to play a key role in the fate and effects of inhaled particles and fibers. Concepts that have been applied in the micron size range may be usefully applied to the nanoscale range, but new challenges are presented based on the small size and possible change in the dissolution:translocation relationship. The size of the component molecule itself may be on the nanoscale. Solute concentration, surface area, surface morphology, surface energy, dissolution layer properties, adsorbing species, and aggregation are relevant parameters in considering dissolution at the nanoscale. With regard to the etiopathology caused by these types of particulates, the metrics of dose (particle number, surface area, mass or shape) is not yet well defined. Analytical procedures for assessing dissolution and translocation include chemical assay and particle characterization. Leaching of substituents from particle surfaces may also be important. Compartmentalization within the respiratory tract may add another dimension of complexity. Dissolution may be a critical step for some nanoscale materials in determining fate in the environment and within the body. This review, combining aspects of particle toxicology, material science, and analytical chemistry, is intended to provide a useful basis for developing relevant dissolution assay(s) for nanoscale particles.
Collapse
Affiliation(s)
- Paul Borm
- Centre of Expertise in Life Sciences, Zuyd University, Heerlen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gray LE, Wilson V, Noriega N, Lambright C, Furr J, Stoker TE, Laws SC, Goldman J, Cooper RL, Foster PMD. Use of the Laboratory Rat as a Model in Endocrine Disruptor Screening and Testing. ILAR J 2004; 45:425-37. [PMID: 15454681 DOI: 10.1093/ilar.45.4.425] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The screening and testing program the US Environmental Protection Agency (EPA) is currently developing to detect endocrine-disrupting chemicals (EDCs) is described. EDCs have been shown to alter the following activities: hypothalamic-pituitary-gonadal (HPG) function; estrogen, androgen, and thyroid hormone synthesis; and androgen and estrogen receptor-mediated effects in mammals and other animals. The value and limitations of mammalian in vivo assays are described that involve the use of the laboratory rat, the EPA Endocrine Disruptor Screening and Testing Advisory Committee species of choice. The discussion includes the evaluation of high-priority chemicals positive in the Tier 1 Screening (T1S) battery, and of subsequent testing in the Tier 2 (T2) battery, with additional short-term screening assays proposed for use in T1.5 to eliminate any uncertainty about T1S results. Descriptions include the in vivo uterotropic assay, which detects estrogens and antiestrogens; the pubertal female assay, which assesses steroidogenesis, antithyroid activity, antiestrogenicity, and HPG function; and the Hershberger assay, which detects the weight of androgen-dependent tissues in castrate-immature-male rats (antiandrogens). Of the several alternative mammalian in vivo assays proposed, a short-term pubertal male rat assay appears most promising for inclusion in T1 or T1.5. An additional in utero-lactational screening protocol is being evaluated, but appears to be better suited for T1.5 or T2 due to the size, complexity, and duration of the assay. The adult intact male assay, also proposed as an alternative for T1, attempts to identify EDCs in a hormonal battery, but has limited value as a screen due to lack of sensitivity and specificity. For Tier 2 testing, the number of endocrine-sensitive endpoints and offspring (F1) examined in multigenerational tests must be thoughtfully expanded for EDCs on a mode-of-action-specific basis, with consideration given to tailoring T2 based on the results of T1S.
Collapse
Affiliation(s)
- L E Gray
- Reproductive Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|