1
|
Feng TJ, Hu W, Shen ZZ, Wang JN, Liu BP, Jia CX. Associations of green and blue space and the natural environment with suicidal ideation: The role of psychiatric disorders. ENVIRONMENTAL RESEARCH 2025; 269:120861. [PMID: 39818349 DOI: 10.1016/j.envres.2025.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Previous research has demonstrated the importance of environmental factors and exposure to the natural environment for human physical and mental health. However, the associations between green space, blue space, and the natural environment (GBN) and the risk of suicidal ideation have not been prospectively studied, and the potential role of psychiatric disorders in these associations has not been explored. METHODS Longitudinal data from the UK Biobank was used. At study baseline (2006-2010), 135,901 participants (female: 56.6%; mean age 56.05 ± 7.73 years) were included. A series of binary logistic regression models were used to examine the independent, joint, and interactive associations of GBN and psychiatric disorders with suicidal ideation. RESULTS Compared with the first quartile (lowest) of exposure, the natural environment at 300 m buffer [Q2, OR = 0.899, 95% CI: 0.835-0.968; Q3, OR = 0.897, 95% CI: 0.831-0.968] and blue space at 1000 m buffer [Q3, OR = 0.920, 95% CI: 0.853-0.993] were significantly associated with lower risk of suicidal ideation. Green space (the fourth quartile) and the natural environment (the fourth quartile) at 1000 m buffer had 14.5% and 15.2% decreased risk of suicidal ideation, respectively. The lowest risk of suicidal ideation was observed among participants with high levels of GBN and no psychiatric disorders, which may be attributed to significant multiplicative and synergistic interactions. CONCLUSIONS Our findings emphasized the significant benefits of GBN exposure in reducing the risk of suicidal ideation, especially in groups with psychiatric disorders. Future research is necessary to conduct to explore potential mechanisms.
Collapse
Affiliation(s)
- Tong-Jie Feng
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Hu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-Zhen Shen
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jia-Ning Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bao-Peng Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cun-Xian Jia
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Zhang Y, Wang W, Zhang X, Jing R, Wen X, Xiao P, Liu X, Zhao Z, Chang T, Li Y, Liu W, Sun C, Yang X, Yang L, Lu M. Neurotrophin-3 as a mediator in the link between PM 2.5 exposure and psychiatric disorders: A Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117658. [PMID: 39765118 DOI: 10.1016/j.ecoenv.2024.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND The causal relationship between PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and common mental disorders, along with its neuropathological mechanisms, remains unclear. METHODS We used genome-wide association study datasets from the UK Biobank and Psychiatric Genomics Consortium to systematically investigate the causal relationship between PM2.5 and nine common psychiatric disorders using two-sample Mendelian randomization (TSMR) methods. Subsequently, we used two-step MR to investigate the mediating effect of 108 potential mediators in the association between PM2.5 and mental disorders. RESULTS Our findings indicated that PM2.5 was positively associated with major depressive disorder (odds ratio (OR): 1.33, 95 % confidence interval (CI): 1.11-1.55), anxiety disorder (OR: 2.96, 95 % CI: 2.13-3.79), schizophrenia (OR: 1.55, 95 % CI: 1.29-1.81), and attention deficit hyperactivity disorder (ADHD) (OR: 1.95, 95 % CI: 1.66-2.24). Unexpectedly, PM2.5 was inversely associated with bipolar disorder (OR: 0.65, 95 % CI: 0.37-0.93). Additionally, PM2.5 was not significantly associated with autism spectrum disorders (OR: 1.24, 95 % CI: 0.83-1.65), post-traumatic stress disorder (OR: 1.51, 95 % CI: 1.11-1.91), obsessive-compulsive disorder (OR: 0.81, 95 % CI: -0.07-1.69), or anorexia nervosa (OR: 1.42, 95 % CI: 0.86-1.98). Further analysis using two-step MR revealed that Neurotrophin-3 mediated 9.86 % of the PM2.5-ADHD association and 5.88 % of the PM2.5-schizophrenia association. Sensitivity analyses supported these findings. CONCLUSIONS This TSMR analysis provides a comprehensive examination of the causal relationship between PM2.5 exposure and nine common psychiatric disorders, with mediation analysis offering insight into the underlying mechanisms. This study aims to raise public awareness of how air quality affects mental health through empirical evidence.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Wang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuening Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran Jing
- Psychology department, Mount Holyoke College, South Hadley, MA, USA
| | - Xin Wen
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, China
| | - Xinjie Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengle Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongmin Chang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufei Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Liu
- The First Clinical School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxi Sun
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming Lu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
4
|
Sher L. Suicide in individuals with no psychiatric disorders: what makes you vulnerable? QJM 2024; 117:313-316. [PMID: 38070495 DOI: 10.1093/qjmed/hcad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 06/06/2024] Open
Abstract
Globally, hundreds of thousands of people die by suicide every year. Suicides are usually associated with psychiatric illness. However, considerable evidence suggests that a significant number of individuals who die by suicide do not have diagnosable psychiatric disorders. The goal of this article is to attract attention to an overlooked issue of suicide in persons with no psychiatric disorders and to discuss some aspects of this issue. Research on identification and prevention of suicidal behavior in people with no psychiatric disorders is very limited. The available data indicate that suicides in individuals without psychiatric disorders are related to life stressors, lack of social support, and certain personality traits such as impulsivity. Suicide risk may be increased in military veterans with no psychiatric disorders. Many physical disorders, especially conditions associated with pain increase suicide risk in individuals with no diagnosable psychiatric disorders. Developmental, genetic and physical factors may play a role in the psychobiology of suicide in people with no psychiatric conditions. Promoting resilience may reduce suicide risk in the general population. Clinicians who work with medical or surgical patients need to have sufficient training in suicide prevention. Possibly, shifting some suicide prevention resources from individuals who are regarded as high-risk suicide patients to the general population may reduce suicide rates. Public education and better awareness about suicide may reduce suicide deaths among people with no psychiatric disorders.
Collapse
Affiliation(s)
- L Sher
- Inpatient Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Bozigar M, Laden F, Hart JE, Redline S, Huang T, Whitsel EA, Nelson EJ, Grady ST, Levy JI, Peters JL. Aircraft noise exposure and body mass index among female participants in two Nurses' Health Study prospective cohorts living around 90 airports in the United States. ENVIRONMENT INTERNATIONAL 2024; 187:108660. [PMID: 38677085 DOI: 10.1016/j.envint.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Aircraft noise exposure is linked to cardiovascular disease risk. One understudied candidate pathway is obesity. This study investigates the association between aircraft noise and obesity among female participants in two prospective Nurses' Health Study (NHS and NHSII) cohorts. METHODS Aircraft day-night average sound levels (DNL) were estimated at participant residential addresses from modeled 1 dB (dB) noise contours above 44 dB for 90 United States (U.S.) airports in 5-year intervals 1995-2010. Biennial surveys (1994-2017) provided information on body mass index (BMI; dichotomized, categorical) and other individual characteristics. Change in BMI from age 18 (BMI18; tertiles) was also calculated. Aircraft noise exposures were dichotomized (45, 55 dB), categorized (<45, 45-54, ≥55 dB) or continuous for exposure ≥45 dB. Multivariable multinomial logistic regression using generalized estimating equations were adjusted for individual characteristics and neighborhood socioeconomic status, greenness, population density, and environmental noise. Effect modification was assessed by U.S. Census region, climate boundary, airline hub type, hearing loss, and smoking status. RESULTS At baseline, the 74,848 female participants averaged 50.1 years old, with 83.0%, 14.8%, and 2.2% exposed to <45, 45-54, and ≥55 dB of aircraft noise, respectively. In fully adjusted models, exposure ≥55 dB was associated with 11% higher odds (95% confidence interval [95%CI]: -1%, 24%) of BMIs ≥30.0, and 15% higher odds (95%CI: 3%, 29%) of membership in the highest tertile of BMI18 (ΔBMI 6.7 to 71.6). Less-pronounced associations were observed for the 2nd tertile of BMI18 (ΔBMI 2.9 to 6.6) and BMI 25.0-29.9 as well as exposures ≥45 versus <45 dB. There was evidence of DNL-BMI trends (ptrends ≤ 0.02). Stronger associations were observed among participants living in the West, arid climate areas, and among former smokers. DISCUSSION In two nationwide cohorts of female nurses, higher aircraft noise exposure was associated with higher BMI, adding evidence to an aircraft noise-obesity-disease pathway.
Collapse
Affiliation(s)
- Matthew Bozigar
- School of Nutrition and Public Health, College of Health, Oregon State University, 160 SW 26th Street, Corvallis, OR 97331, USA.
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Susan Redline
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA 02215, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth J Nelson
- College of Arts and Sciences, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
| | - Stephanie T Grady
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA
| | - Junenette L Peters
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA
| |
Collapse
|
6
|
Münzel T, Molitor M, Kuntic M, Hahad O, Röösli M, Engelmann N, Basner M, Daiber A, Sørensen M. Transportation Noise Pollution and Cardiovascular Health. Circ Res 2024; 134:1113-1135. [PMID: 38662856 DOI: 10.1161/circresaha.123.323584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Nicole Engelmann
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (M.B.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Mette Sørensen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark (M.S.)
- Department of Natural Science and Environment, Roskilde University, Denmark (M.S.)
| |
Collapse
|
7
|
Wicki B, Vienneau D, Schäffer B, Müller TJ, Raub U, Widrig J, Pervilhac C, Röösli M. Acute effects of military aircraft noise on sedative and analgesic drug administrations in psychiatric patients: A case-time series analysis. ENVIRONMENT INTERNATIONAL 2024; 185:108501. [PMID: 38368719 DOI: 10.1016/j.envint.2024.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Existing evidence suggests that psychiatric patients are highly noise sensitive, and that noise exposure increases the risk for adverse mental health outcomes, such as psychiatric hospitalizations and even suicide. To investigate acute effects of noise in this vulnerable population, we assessed short-term associations between fighter jet noise and on-demand sedative and analgesic drug administrations in a psychiatric clinic located close to a military airfield in Switzerland. METHODS We applied a case time series analysis with an hourly time resolution using distributed-lag models. Analysis was adjusted for long-term and seasonal trends, day of week, time of day, time-varying weather conditions and the week of stay. Noise exposure (hourly A-weighted equivalent continuous sound pressure levels (LAeq)) was modelled using detailed flight plans and noise footprints for different fighter jet and route combinations. Outcome data were available from the clinic's records. OUTCOMES During the study period (06/2016-12/2021), 23,486 flights occurred. 5,968 clinical stays with a median length of 41 days (IQR: 28d, 50d) were recorded. The odds ratio (OR) for medication administration over the lag period of 3 hours after exposure was 1.016 (95 %CI: 1.006, 1.026) per 10 dB LAeq for sedatives and 1.032 (95 %CI: 1.016, 1.048) per 10 dB for analgesics. Effects were larger in multimorbid patients. INTERPRETATION Case time series analysis is a novel method to investigate transient associations in observational data while minimizing risk of bias. Using an objectively recorded outcome measure, our results demonstrate that psychiatric patients are a vulnerable population, in which noise exposure can lead to symptom exacerbations and adverse events.
Collapse
Affiliation(s)
- Benedikt Wicki
- Swiss TPH (Swiss Tropical and Public Health Institute), Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Danielle Vienneau
- Swiss TPH (Swiss Tropical and Public Health Institute), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Beat Schäffer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Thomas J Müller
- Translational Research Centre, University Hospital of Psychiatry and Psychotherapy University of Bern, Bern, Switzerland; Private Clinic Meiringen, Meiringen, Switzerland
| | - Ulrich Raub
- Private Clinic Meiringen, Meiringen, Switzerland
| | | | - Charlotte Pervilhac
- Private Clinic Meiringen, Meiringen, Switzerland; Institute of Psychology, Health Psychology and Behavioural Medicine, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss TPH (Swiss Tropical and Public Health Institute), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, Münzel T. Noise and mental health: evidence, mechanisms, and consequences. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00642-5. [PMID: 38279032 DOI: 10.1038/s41370-024-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Ivana Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
9
|
Nobile F, Forastiere A, Michelozzi P, Forastiere F, Stafoggia M. Long-term exposure to air pollution and incidence of mental disorders. A large longitudinal cohort study of adults within an urban area. ENVIRONMENT INTERNATIONAL 2023; 181:108302. [PMID: 37944432 DOI: 10.1016/j.envint.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Recent epidemiological evidence suggests associations between air pollution exposure and major depressive disorders, but the literature is inconsistent for other mental illnesses. We investigated the associations of several air pollutants and road traffic noise with the incidence of different categories of mental disorders in a large population-based cohort. METHODS We enrolled 1,739,277 individuals 30 + years from the 2011 census in Rome, Italy, and followed them up until 2019. In detail, we analyzed 1,733,331 participants (mean age 56.43 +/- 15.85 years; 54.96 % female) with complete information on covariates of interest. We excluded subjects with prevalent mental disorders at baseline to evaluate the incidence (first hospitalization or co-pay exemption) of schizophrenia spectrum disorders, bipolar, anxiety, personality, or substance use disorders. In addition, we studied subjects with first prescriptions of antipsychotics, antidepressants, and mood stabilizers. Annual average concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO₂), Black Carbon (BC), ultrafine particles (UFP), and road traffic noise were assigned to baseline residential addresses. We applied Cox regression models adjusted for individual and area-level covariates. RESULTS Each interquartile range (1.13 µg/m3) increase in PM2.5 was associated with a hazard ratio (HR) of 1.070 (95 % confidence interval [CI]: 1.017, 1.127) for schizophrenia spectrum disorder, 1.135 (CI: 1.086, 1.186) for depression, 1.097 (CI: 1.030, 1.168) for anxiety disorders. Positive associations were also detected for BC and UFP, and with the three categories of drug prescriptions. Bipolar, personality, and substance use disorders did not show clear associations. The effects were highest in the age group 30-64 years, except for depression. CONCLUSIONS Long-term exposure to ambient air pollution, especially fine and ultrafine particles, was associated with increased risks of schizophrenia spectrum disorder, depression, and anxiety disorders. The association of the pollutants with the prescriptions of specific drugs increases the credibility of the results.
Collapse
Affiliation(s)
- Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy.
| | | | - Paola Michelozzi
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Francesco Forastiere
- Environmental Research Group, Imperial College, London, UK; National Research Council, IFT, Palermo, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy
| |
Collapse
|