1
|
Gao L, Ding YN, Zhou PC, Dong LL, Peng XY, Tang YR, Zhu QX, Zhang JX. Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury. Toxicol Ind Health 2025; 41:83-96. [PMID: 39588578 DOI: 10.1177/07482337241300953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Trichloroethylene (TCE) is a volatile, colorless liquid that is widely used as a chlorinated organic vehicle in industrial production and processing industries. Many workers exposed to trichloroethylene may develop trichloroethylene hypersensitivity syndrome (THS). However, the underlying mechanism of THS is still unclear, especially liver injury. The present study aimed to investigate whether Wnt5a/c-Jun N-terminal kinase (JNK) is involved in and regulates liver injury caused by TCE exposure and to provide new directions for the prevention and treatment in clinical settings of liver injury caused by TCE exposure. We used 6- to 8-week-old SPF-grade BALB/c female mice to establish a TCE sensitization model and explored the mechanism through inhibitor intervention. We found that the expression of Wnt5a/JNK was significantly elevated in the liver of TCE sensitization-positive mice. Inhibitors of Wnt Production 2 (IWP-2) are known antagonists of the Wnt pathway. TCE-sensitization mice treated with IWP-2 showed downregulated Wnt5a/JNK expression, reduced Kupffer cell activation, and decreased liver injury. At the same time, we found that phosphorylated JNK in TCE-sensitization mouse livers and extracted Kupffer cells showed a significant downward trend after inhibition of Wnt5a function. We also found that a specific JNK inhibitor, SP600125, decreased the secretion of cytokines and chemokines and decreased Kupffer cell activation. We demonstrated that Wnt5a/JNK was involved in the regulation of liver injury in TCE-sensitization mice and that it exacerbated liver injury by activating Kupffer cells and releasing chemokines. We therefore hypothesized that Kupffer cell activation was affected by JNK, which reduced chemokine and cytokine secretion and attenuated liver injury in TCE-sensitization mice.
Collapse
Affiliation(s)
- Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Ya-Ni Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Peng-Cheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Luo-Lun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Xin-Yu Peng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi-Ru Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Qi-Xing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
2
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
3
|
Lash LH. Renal Glutathione: Dual roles as antioxidant protector and bioactivation promoter. Biochem Pharmacol 2024; 228:116181. [PMID: 38556029 PMCID: PMC11410546 DOI: 10.1016/j.bcp.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The tripeptide glutathione (GSH) possesses two key structural features, namely the nucleophilic sulfur and the γ-glutamyl isopeptide bond. The former allows GSH to serve as a critical antioxidant and anti-electrophile. The latter allows GSH to translocate throughout the systemic circulation without being degraded. The kidneys exhibit several unique processes for handling GSH. This includes the extraction of 80% of plasma GSH, in part by glomerular filtration but mostly by transport across the basolateral plasma membrane. Studies on the protective effect of exogenous GSH are summarized, showing the different inherent susceptibility of proximal tubular and distal tubular cells and the impact on pathological or disease states, including hypoxia, diabetic nephropathy, and compensatory renal growth associated with uninephrectomy. Studies on mitochondrial GSH transport show the coordination between the citric acid cycle and oxidative phosphorylation in generating driving forces for both plasma membrane and mitochondrial carriers. The strong protective effects of increasing expression and activity of these carriers against oxidants and mitochondrial toxicants are summarized. Although GSH plays a cytoprotective role in most situations, two distinct exceptions to this are presented. In contrast to expectations, overexpression of the mitochondrial 2-oxoglutarate carrier markedly increased cell death from exposure to the nephrotoxic chemotherapeutic drug cisplatin (CDDP). Another key example of GSH serving a bioactivation role in the kidneys, rather than a detoxification role, is the metabolism of halogenated alkenes such as trichloroethylene (TCE). Although considerable research has gone into this topic, unanswered questions and emerging topics remain and are discussed.
Collapse
|
4
|
Lu EH, Ford LC, Rusyn I, Chiu WA. Reducing uncertainty in dose-response assessments by incorporating Bayesian benchmark dose modeling and in vitro data on population variability. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 39148436 DOI: 10.1111/risa.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
There are two primary sources of uncertainty in the interpretability of toxicity values, like the reference dose (RfD): estimates of the point of departure (POD) and the absence of chemical-specific human variability data. We hypothesize two solutions-employing Bayesian benchmark dose (BBMD) modeling to refine POD determination and combining high-throughput toxicokinetic modeling with population-based toxicodynamic in vitro data to characterize chemical-specific variability. These hypotheses were tested by deriving refined probabilistic estimates for human doses corresponding to a specific effect size (M) in the Ith population percentile (HDM I) across 19 Superfund priority chemicals. HDM I values were further converted to biomonitoring equivalents in blood and urine for benchmarking against human data. Compared to deterministic default-based RfDs, HDM I values were generally more protective, particularly influenced by chemical-specific data on interindividual variability. Incorporating chemical-specific in vitro data improved precision in probabilistic RfDs, with a median 1.4-fold reduction in uncertainty variance. Comparison with US Environmental Protection Agency's Exposure Forecasting exposure predictions and biomonitoring data from the National Health and Nutrition Examination Survey identified chemicals with margins of exposure nearing or below one. Overall, to mitigate uncertainty in regulatory toxicity values and guide chemical risk management, BBMD modeling and chemical-specific population-based human in vitro data are essential.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Xie H, Liang B, Zhu Q, Wang L, Li H, Qin Z, Zhang J, Liu Z, Wu Y. The role of PANoptosis in renal vascular endothelial cells: Implications for trichloroethylene-induced kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116433. [PMID: 38714087 DOI: 10.1016/j.ecoenv.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China
| | - Bo Liang
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Qixing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lin Wang
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Li
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Zhuohui Qin
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhibing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yonggui Wu
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Jiao B, Jiang H, Liu S, Wang Y, Chen Y, Duan H, Niu Y, Shen M, Wang H, Dai Y. Unveiling the mechanisms of trichloroethylene hypersensitivity syndrome: Exploring the role of connexin 43 gap junctions in severe skin damage. Food Chem Toxicol 2024; 187:114594. [PMID: 38485042 DOI: 10.1016/j.fct.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.
Collapse
Affiliation(s)
- Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Meili Shen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
7
|
Lu EH, Ford LC, Chen Z, Burnett SD, Rusyn I, Chiu WA. Evaluating scientific confidence in the concordance of in vitro and in vivo protective points of departure. Regul Toxicol Pharmacol 2024; 148:105596. [PMID: 38447894 PMCID: PMC11193089 DOI: 10.1016/j.yrtph.2024.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
To fulfil the promise of reducing reliance on mammalian in vivo laboratory animal studies, new approach methods (NAMs) need to provide a confident basis for regulatory decision-making. However, previous attempts to develop in vitro NAMs-based points of departure (PODs) have yielded mixed results, with PODs from U.S. EPA's ToxCast, for instance, appearing more conservative (protective) but poorly correlated with traditional in vivo studies. Here, we aimed to address this discordance by reducing the heterogeneity of in vivo PODs, accounting for species differences, and enhancing the biological relevance of in vitro PODs. However, we only found improved in vitro-to-in vivo concordance when combining the use of Bayesian model averaging-based benchmark dose modeling for in vivo PODs, allometric scaling for interspecies adjustments, and human-relevant in vitro assays with multiple induced pluripotent stem cell-derived models. Moreover, the available sample size was only 15 chemicals, and the resulting level of concordance was only fair, with correlation coefficients <0.5 and prediction intervals spanning several orders of magnitude. Overall, while this study suggests several ways to enhance concordance and thereby increase scientific confidence in vitro NAMs-based PODs, it also highlights challenges in their predictive accuracy and precision for use in regulatory decision making.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Sarah D Burnett
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Adamson A, Ilieva N, Stone WJ, De Miranda BR. Low-dose inhalation exposure to trichloroethylene induces dopaminergic neurodegeneration in rodents. Toxicol Sci 2023; 196:218-228. [PMID: 37669148 PMCID: PMC11491929 DOI: 10.1093/toxsci/kfad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Trichloroethylene (TCE) is one of the most pervasive environmental contaminants in the world and is associated with Parkinson disease (PD) risk. Experimental models in rodents show that TCE is selectively toxic to dopaminergic neurons at high doses of ingestion, however, TCE is a highly volatile toxicant, and the primary pathway of human exposure is inhalation. As TCE is a highly lipophilic, volatile organic compound (VOC), inhalation exposure results in rapid diffusion throughout the brain, avoiding first-pass hepatic metabolism that necessitated high doses to recapitulate exposure conditions observed in human populations. We hypothesized that inhalation of TCE would induce significantly more potent neurodegeneration than ingestion and better recapitulate environmental conditions of vapor intrusion or off gassing from liquid TCE. To this end, we developed a novel, whole-body passive exposure inhalation chamber in which we exposed 10-month-old male and female Lewis rats to 50 ppm TCE (time weighted average, TWA) or filtered room air (control) over 8 weeks. In addition, we exposed 12-month-old male and female C57Bl/6 mice to 100 ppm TCE (TWA) or control over 12 weeks. Both rats and mice exposed to chronic TCE inhalation showed significant degeneration of nigrostriatal dopaminergic neurons as well as motor and gait impairments. TCE exposure also induced accumulation of pSer129-αSyn in dopaminergic neurons as well as microglial activation within the substantia nigra of rats. Collectively, these data indicate that TCE inhalation causes highly potent dopaminergic neurodegeneration and recapitulates some of the observed neuropathology associated with PD, providing a future platform for insight into the mechanisms and environmental conditions that influence PD risk from TCE exposure.
Collapse
Affiliation(s)
- Ashley Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Neda Ilieva
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - William J Stone
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Briana R De Miranda
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
9
|
Adamson AB, Ilieva NM, Stone WJ, De Miranda BR. Low-dose inhalation exposure to trichloroethylene induces dopaminergic neurodegeneration in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548754. [PMID: 37502893 PMCID: PMC10369984 DOI: 10.1101/2023.07.12.548754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Trichloroethylene (TCE) is one of the most pervasive environmental contaminants in the world and is associated with Parkinson disease (PD) risk. Experimental models in rodents show that TCE is selectively toxic to dopaminergic neurons at high doses of ingestion, however, TCE is a highly volatile toxicant, and the primary pathway of human exposure is inhalation. As TCE is a highly lipophilic, volatile organic contaminant (VOC), inhalation exposure results in rapid diffusion throughout the brain, avoiding first-pass hepatic metabolism that necessitated high doses to recapitulate exposure conditions observed in human populations. We hypothesized that inhalation of TCE would induce significantly more potent neurodegeneration than ingestion and better recapitulate environmental conditions of vapor intrusion or off gassing from liquid TCE. To this end, we developed a novel, whole-body passive exposure inhalation chamber in which we exposed 10-month-old male and female Lewis rats to 50 ppm TCE (time weighted average, TWA) or filtered room air (control) over 8 weeks. In addition, we exposed 12-month-old male and female C57Bl/6 mice to 100 ppm TCE (TWA) or control over 12 weeks. Both rats and mice exposed to chronic TCE inhalation showed significant degeneration of nigrostriatal dopaminergic neurons as well as motor and gait impairments. TCE exposure also induced accumulation of pSer129-αSyn in dopaminergic neurons as well as microglial activation within the substantia nigra of rats. Collectively, these data indicate that TCE inhalation causes highly potent dopaminergic neurodegeneration and recapitulates some of the observed neuropathology associated with PD, providing a future platform for insight into the mechanisms and environmental conditions that influence PD risk from TCE exposure.
Collapse
|
10
|
Tsai HHD, House JS, Wright FA, Chiu WA, Rusyn I. A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo. Toxicol Sci 2023; 193:219-233. [PMID: 37079747 PMCID: PMC10230285 DOI: 10.1093/toxsci/kfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Hazard evaluation of substances of "unknown or variable composition, complex reaction products and biological materials" (UVCBs) remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained. Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2 cell types-iPSC-derived-hepatocytes and -cardiomyocytes-contributed the most informative and protective PODs and may be used to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each manufacturing category for further toxicity evaluation in vivo.
Collapse
Affiliation(s)
- Han-Hsuan Doris Tsai
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - John S House
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
- Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
11
|
Lash LH. Invited Perspective: Improved Risk Characterization for Trichloroethylene and Perchloroethylene Based on New Analyses of Glutathione Conjugation Rates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:111307. [PMID: 36445295 PMCID: PMC9707492 DOI: 10.1289/ehp12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Lawrence H. Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|