1
|
Chen Y, Xie S, Chen X, Zhong X, Yang L, Lin W, Huang J, Chen R. Impact of solid fuel use on asthma prognosis and consistent peak expiratory flow changes: Evidence from China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117555. [PMID: 39705974 DOI: 10.1016/j.ecoenv.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Exposure to solid fuels might result in substantial indoor air contamination that can detrimentally affect respiratory wellness. Yet the connection between use of such fuels and the incidence as well as the progression of asthma needs further clarification. This investigation endeavors to conduct an integrative cross-sectional and longitudinal study to examined the link between solid fuel utilization and asthma. METHODS Involving participants from the China Health and Retirement Longitudinal Study (CHARLS), this research scrutinized the impact of solid fuel exposure on asthma incidence, peak expiratory flow (PEF), and mortality in asthma patients. The study applied logistic and linear regression for the cross-sectional data, Cox proportional hazards models and linear mixed effects methods were utilized to gauge the impact on mortality and PEF among subjects with asthma. RESULTS Among the 12025 individuals surveyed, use of solid fuels was significantly associated to increased asthma risk and a decrease in PEF among the Chinese population (P < 0.001), with consistent trends noted across categories of age, gender, and smoking habits. The survival analysis demonstrated that, when contrasted with non-asthmatic individuals using cleaner fuel, the risk of all-cause mortality was 1.63 times higher (95 % CI = 1.33, 2.00, p < 0.001) in asthmatic individuals regularly using solid fuels. Mixed-effects model pointed to a statistically potential interaction between gender and the influence of solid fuels on long-term reduction in PEF in patients with milder asthma forms. CONCLUSIONS The research provided insights into the harmful effects of solid fuel dependence on asthma risk and outcomes, contributing novel evidence supporting this link. The results emphasize the necessity of curtailing solid fuel use to diminish potential health risks associated with asthma and to improve prognosis in affected individuals.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Shuojia Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Xirong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Linhang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Weitong Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Junfeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Guangzhou National Lab, Guangzhou, PR China.
| |
Collapse
|
2
|
Abdullah M, Adhikary S, Bhattacharya S, Hazra S, Ganguly A, Nanda S, Rajak P. E-waste in the environment: Unveiling the sources, carcinogenic links, and sustainable management strategies. Toxicology 2024; 509:153981. [PMID: 39490727 DOI: 10.1016/j.tox.2024.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
E-waste refers to the electrical and electronic equipment discarded without the intent of reuse or at the end of its functional lifespan. In 2022, approximately 62 billion kg of e-waste, equivalent to 7.8 kg per capita, was generated globally. With an alarming annual growth of approximately 2 million metric tonnes, e-waste production may exceed 82 billion kg by 2030. Improper disposal of e-waste can be detrimental to human health and the entire biosphere. E-waste encompasses a wide range of materials, including heavy metals, Polychlorinated Biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Dibenzo-dioxins and -furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs), and radioactive elements. E-waste, when disposed inappropriately can directly contaminate the aquatic and terrestrial environment, leading to human exposure through ingestion, inhalation, dermal absorption, and trans-placental transfer. These detrimental contaminants can directly enter the human body from the environment and may fuel carcinogenesis by modulating cell cycle proteins, redox homeostasis, and mutations. Heavy metals such as cadmium, mercury, arsenic, lead, chromium, and nickel, along with organic pollutants like PAHs, PCBs, PBDEs, PFAS, and radioactive elements, play a crucial role in inducing malignancy. Effective collection, sorting, proper recycling, and appropriate disposal techniques are essential to reduce environmental contamination with e-waste-derived chemicals. Hence, this comprehensive review aims to unravel the global environmental burden of e-waste and its links to carcinogenesis in humans. Furthermore, it provides an inclusive discussion on potential treatment approaches to minimize environmental e-waste contamination.
Collapse
Affiliation(s)
- Md Abdullah
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Sudharani Hazra
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Liu Q, Niu Y, Pei Z, Yang Y, Xie Y, Wang M, Wang J, Wu M, Zheng J, Yang P, Hao H, Pang Y, Bao L, Dai Y, Niu Y, Zhang R. Gas6-Axl signal promotes indoor VOCs exposure-induced pulmonary fibrosis via pulmonary microvascular endothelial cells-fibroblasts cross-talk. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134786. [PMID: 38824778 DOI: 10.1016/j.jhazmat.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds (VOCs) as environmental pollutants were associated with respiratory diseases. Pulmonary fibrosis (PF) was characterized by an increase of extracellular matrix, leading to deterioration of lung function. The adverse effects on lung and the potential mechanism underlying VOCs induced PF had not been elucidated clearly. In this study, the indoor VOCs exposure mouse model along with an ex vivo biosensor assay was established. Based on scRNA-seq analysis, the adverse effects on lung and potential molecular mechanism were studied. Herein, the results showed that VOCs exposure from indoor decoration contributed to decreased lung function and facilitated pulmonary fibrosis in mice. Then, the whole lung cell atlas after VOCs exposure and the heterogeneity of fibroblasts were revealed. We explored the molecular interactions among various pulmonary cells, suggesting that endothelial cells contributed to fibroblasts activation in response to VOCs exposure. Mechanistically, pulmonary microvascular endothelial cells (MPVECs) secreted Gas6 after VOCs-induced PANoptosis phenotype, bound to the Axl in fibroblasts, and then activated fibroblasts. Moreover, Atf3 as the key gene negatively regulated PANoptosis phenotype to ameliorate fibrosis induced by VOCs exposure. These novel findings provided a new perspective about MPVECs could serve as the initiating factor of PF induced by VOCs exposure.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujia Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jingyuan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
4
|
Shen Q, Liu Y, Li G, An T. A review of disrupted biological response associated with volatile organic compound exposure: Insight into identification of biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174924. [PMID: 39047835 DOI: 10.1016/j.scitotenv.2024.174924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Volatile organic compounds (VOCs) are widespread harmful atmospheric pollutants, which have long been concerned and elucidated to be one of the risks of acute and chronic diseases for human, such as leukemia and cancer. Although numerous scientific studies have documented the potential adverse outcomes caused by VOC exposure, the mechanisms which biological response pathways of these VOC disruption remain poorly understood. Therefore, the identification of biochemical markers associated with metabolism, health effects and diseases orientation can be an effective means of screening biological targets for VOC exposure, which provide evidences to the toxicity assessment of compounds. The current review aims to understand the mechanisms underlying VOCs-elicited adverse outcomes by charactering various types of biomarkers. VOCs-related biomarkers from three aspects were summarized through in vitro, animal and epidemiological studies. i) Unmetabolized and metabolized VOC biomarkers in human samples for assessing exposure characteristics in different communities; ii) Adverse endpoint effects related biomarkers, mainly including (anti)oxidative stress, inflammation response and DNA damage; iii) Omics-based molecular biomarkers alteration in gene, protein, lipid and metabolite aspects associated with biological signaling pathway disorders response to VOC exposure. Further research, advanced machine learning and bioinformation approaches combined with experimental results are urgently needed to ascertain the selection of biomarkers and further illuminate toxic mechanisms of VOC exposure. Finally, VOCs-induced disease causes can be predicted with proven results.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yalin Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Fedan JS, Thompson JA, Sager TM, Roberts JR, Joseph P, Krajnak K, Kan H, Sriram K, Weatherly LM, Anderson SE. Toxicological Effects of Inhaled Crude Oil Vapor. Curr Environ Health Rep 2024; 11:18-29. [PMID: 38267698 PMCID: PMC10907427 DOI: 10.1007/s40572-024-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess the toxicological consequences of crude oil vapor (COV) exposure in the workplace through evaluation of the most current epidemiologic and laboratory-based studies in the literature. RECENT FINDINGS Crude oil is a naturally occuring mixture of hydrocarbon deposits, inorganic and organic chemical compounds. Workers engaged in upstream processes of oil extraction are exposed to a number of risks and hazards, including getting crude oil on their skin or inhaling crude oil vapor. There have been several reports of workers who died as a result of inhalation of high levels of COV released upon opening thief hatches atop oil storage tanks. Although many investigations into the toxicity of specific hydrocarbons following inhalation during downstream oil processing have been conducted, there is a paucity of information on the potential toxicity of COV exposure itself. This review assesses current knowledge of the toxicological consequences of exposures to COV in the workplace.
Collapse
Affiliation(s)
- Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Lisa M Weatherly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|
6
|
de Almeida KA, de Moura FR, Lima JV, Garcia EM, Muccillo-Baisch AL, Ramires PF, Penteado JO, da Luz Mathias M, Dias D, da Silva Júnior FMR. Oxidative damage in the Vesper mouse (Calomys laucha) exposed to a simulated oil spill-a multi-organ study. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:502-511. [PMID: 37118609 DOI: 10.1007/s10646-023-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Small wild mammals have been used to measure the damage caused by exposure to oil-contaminated soil, including deer mice. However, the study of toxic effects of crude oil using oxidative damage biomarkers in the wild rodent Calomys laucha (Vesper mouse) is absent. This investigation aimed to evaluate the effects of acute exposure to contaminated soil with different concentrations of crude oil (0, 1, 2, 4 and 8% w/w), simulating an accidental spill, using oxidative stress biomarkers in the liver, kidneys, lungs, testes, paw muscle, and lymphocytes of C. laucha. Animals exposed to the contaminated soil showed increases in lipid peroxidation and protein carbonylation at the highest exposure concentrations in most organ homogenates analyzed and also in blood cells, but responses to total antioxidant capacity were tissue-dependent. These results showed that acute exposure to oil-contaminated soil caused oxidative damage in C. laucha and indicate these small mammals may be susceptible to suffer the impacts of such contamination in its occurrence region, threatening the species' survival.
Collapse
Affiliation(s)
- Krissia Aparecida de Almeida
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Fernando Rafael de Moura
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Juliane Ventura Lima
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Edariane Menestrino Garcia
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Paula Florencio Ramires
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Julia Oliveira Penteado
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Maria da Luz Mathias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Deodália Dias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Flavio Manoel Rodrigues da Silva Júnior
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
7
|
Sager TM, Joseph P, Umbright CM, Hubbs AF, Barger M, Kashon ML, Fedan JS, Roberts JR. Biological effects of inhaled crude oil vapor. III. Pulmonary inflammation, cytotoxicity, and gene expression profile. Inhal Toxicol 2023; 35:241-253. [PMID: 37330949 PMCID: PMC10658288 DOI: 10.1080/08958378.2023.2224394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.
Collapse
Affiliation(s)
- Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Barger
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
8
|
Zhou HL, Su GH, Zhang RY, Di DS, Wang Q. Association of volatile organic compounds co-exposure with bone health indicators and potential mediators. CHEMOSPHERE 2022; 308:136208. [PMID: 36041527 DOI: 10.1016/j.chemosphere.2022.136208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Limited evidence was found in the associations of volatile organic compound (VOC) exposure with bone health indicators. This study aimed to explore the associations of individual and combined metabolites of VOCs (mVOCs) in urine, a representative of the internal exposure level of VOCs, with bone mineral density (BMD), osteoporosis (OP) and fracture, and potential mediators. Data of the National Health Examination and Nutrition Survey 2005-2006 and 2013-2014 was used. Multiple linear and logistic regression modeling were performed to analyze the associations of individual mVOC with bone health indicators. The least absolute shrinkage and selection operator (LASSO) regression was adopted to select mVOCs that were more relevant to bone health indicators for further weight quantile sum (WQS) analysis used for analyzing the associations between multiple VOC co-exposure and bone health indicators. Mediation analysis was used to identify potential mediators. Seventeen mVOC members with detection rate of >50% in urine of all 3478 participants aged ≥20 years (1829 females) were involved. Levels of most mVOCs were higher in women than men. Eight mVOCs were negatively associated with BMDs, and two and four mVOCs were positively associated with OP and fracture risks, respectively. WQS regression revealed decreased femoral neck BMD (β = -0.010 g/cm2, 95% CI: -0.020, -0.0001) and total spine BMD (β = -0.015 g/cm2, 95% CI: -0.028, -0.002) in response to increasing mVOC mixture levels. And alkaline phosphatase (ALP), body mass index (BMI), fasting insulin (FI) and high-density lipoprotein (HDL), were mediators in the associations with proportions of mediating effect ranging from 4.6% to 10.2%. Individual and combined VOC (co-)exposure were associated with reduced BMDs in American adults. ALP, BMI, FI and HDL were demonstrated to be mediators in the association of multiple VOC co-exposure with BMD.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guan-Hua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Abdrabouh AE. Inflammatory and proapoptotic effects of inhaling gasoline fumes on the lung and ameliorative effects of fenugreek seeds. Sci Rep 2022; 12:14446. [PMID: 36002599 PMCID: PMC9402566 DOI: 10.1038/s41598-022-18607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Impacts of inhaling gasoline fumes on the lungs of adult male rats and the alleviating role of fenugreek seeds were evaluated. Twenty-four rats were divided into four groups, unexposed control and fenugreek groups, gasoline exposed groups for 6 h/6 day/week for 10 weeks with and without supplementation of fenugreek seed powder in food (5% w/w). Rats exposed to gasoline fumes showed significant elevation in lung tumor necrosis factor-α, as an inflammatory marker, and the proapoptotic marker Bax with a reduction in the antiapoptotic marker Bcl2. Moreover, remarkable elevations in transforming growth factor-β1, collagen and hydroxyproline were observed as fibrotic markers. Lung oxidative stress markers (hydrogen peroxides, malondialdehyde, and protein carbonyl) increased significantly along with marked decrease in total antioxidant capacity, superoxide dismutase, and catalase levels. Additionally, marked decreases in white and red blood cell counts, hemoglobin content, platelet count, accompanied by elevated red cell distribution width percentage were observed, supporting the inflammatory status. Histopathological changes represented by hematoxylin&eosin, immunohistochemistry staining for Bax&Bcl2, and transmission electron microscopy supported the negative impacts of gasoline fumes compared to the control group. Fenugreek seeds supplementation with gasoline exposure showed pronounced alleviation of lung biochemical and histopathological changes compared to the gasoline-exposed group.
Collapse
Affiliation(s)
- Abeer E Abdrabouh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
10
|
Biological effects of inhaled crude oil vapor. II. Pulmonary effects. Toxicol Appl Pharmacol 2022; 450:116154. [DOI: 10.1016/j.taap.2022.116154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
|
11
|
Qiu H, Chuang KJ, Fan YC, Chang TP, Bai CH, Ho KF. Acute effects of ambient non-methane hydrocarbons on cardiorespiratory hospitalizations: A multicity time-series study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113370. [PMID: 35255250 DOI: 10.1016/j.ecoenv.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few environmental epidemiological studies and no large multicity studies have evaluated the acute short-term health effects of ambient non-methane hydrocarbons (NMHC), the essential precursors of ground-level ozone and secondary organic aerosol formation. OBJECTIVE We conducted this multicity time-series study in Taiwan to evaluate the association between airborne NMHC exposure and cardiorespiratory hospital admissions. METHODS We collected the daily mean concentrations of NMHC, fine particulate matter (PM2.5), ozone (O3), weather conditions, and daily hospital admission count for cardiorespiratory diseases between 2014 and 2017 from eight major cities of Taiwan. We applied an over-dispersed generalized additive Poisson model (GAM) with adjustment for temporal trends, seasonal variations, weather conditions, and calendar effects to compute the effect estimate for each city. Then we conducted a random-effects meta-analysis to pool the eight city-specific effect estimates to obtain the overall associations of NMHC exposure on lag0 day with hospital admissions for respiratory and circulatory diseases, respectively. RESULTS On average, a 0.1-ppm increase of lag0 NMHC demonstrated an overall 0.9% (95% CI: 0.4-1.3%) and 0.8% (95% CI: 0.4-1.2%) increment of hospital admissions for respiratory and circulatory diseases, respectively. Further analyses with adjustment for PM2.5 and O3 in the multi-pollutant model or sensitivity analyses with restricting the NMHC monitoring from the general stations only confirmed the robustness of the association between ambient NMHC exposure and cardiorespiratory hospitalizations. CONCLUSION Our findings provide robust evidence of higher cardiorespiratory hospitalizations in association with acute exposure to ambient NMHC in eight major cities of Taiwan.
Collapse
Affiliation(s)
- Hong Qiu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Väisänen A, Alonen L, Ylönen S, Hyttinen M. Organic compound and particle emissions of additive manufacturing with photopolymer resins and chemical outgassing of manufactured resin products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:198-216. [PMID: 34763622 DOI: 10.1080/15287394.2021.1998814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photopolymer resins are applied at an increasing rate in additive manufacturing (AM) industry as vat photopolymerization (VP) and material jetting (MJ) methods gain more popularity. The aim of this study was to measure volatile organic compound (VOC), carbonyl compound, ultrafine particle (UFP), and particulate matter (PM10) air concentrations emitted in 3D printer operations. Individual chemicals were identified when multiple photopolymer resin feedstocks were used in various VP and MJ printers. The size distributions of UFPs, and indoor air parameters were also monitored. Finally, the VOC outgassing of the cured resin materials was determined over 84 days. The data demonstrated that 3D printer operators were exposed to low concentrations of airborne exposure agents as follows: average concentrations of VOCs were between 41 and 87 µg/m3, UFP number levels ranged between 0.19 and 3.62 × 103 number/cm3; however, no impact was detected on air parameters or PM10 concentrations. A majority of the UFPs existed in the 10-45 nm size range. The identified compounds included hazardous species included sensitizing acrylates and carcinogenic formaldehyde. The outgassed products included similar compounds that were encountered during the AM processes, and post-processing solvents. Products heated to 37°C emitted 1.4‒2.9-fold more VOCs than at room temperature. Total emissions were reduced by 84‒96% after 28 days roughly from 3000-14000 to 100-1000 µg/m2/hr. In conclusion, resin printer operators are exposed to low concentrations of hazardous emissions, which might result in adverse health outcomes during prolonged exposure. Manufactured resin products are suggested to be stored for 4 weeks after their production to reduce potential consumer VOC hazards.
Collapse
Affiliation(s)
- Antti Väisänen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lauri Alonen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Sampsa Ylönen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Marko Hyttinen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Rusiecki JA, Denic-Roberts H, Thomas DL, Collen J, Barrett J, Christenbury K, Engel LS. Incidence of chronic respiratory conditions among oil spill responders: Five years of follow-up in the Deepwater Horizon Oil Spill Coast Guard Cohort study. ENVIRONMENTAL RESEARCH 2022; 203:111824. [PMID: 34364859 PMCID: PMC8616774 DOI: 10.1016/j.envres.2021.111824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Over ten years after the Deepwater Horizon (DWH) oil spill, our understanding of long term respiratory health risks associated with oil spill response exposures is limited. We conducted a prospective analysis in a cohort of U.S. Coast Guard personnel with universal military healthcare. METHODS For all active duty cohort members (N = 45,193) in the DWH Oil Spill Coast Guard Cohort Study we obtained medical encounter data from October 01, 2007 to September 30, 2015 (i.e., ~2.5 years pre-spill; ~5.5 years post-spill). We used Cox Proportional Hazards regressions to calculate adjusted hazard ratios (aHR), comparing risks for incident respiratory conditions/symptoms (2010-2015) for: responders vs. non-responders; responders reporting crude oil exposure, any inhalation of crude oil vapors, and being in the vicinity of burning crude oil versus responders without those exposures. We also evaluated self-reported crude oil and oil dispersant exposures, combined. Within-responder comparisons were adjusted for age, sex, and smoking. RESULTS While elevated aHRs for responder/non-responder comparisons were generally weak, within-responder comparisons showed stronger risks with exposure to crude oil. Notably, for responders reporting exposure to crude oil via inhalation, there were elevated risks for allsinusitis (aHR = 1.48; 95%CI, 1.06-2.06), unspecified chronic sinusitis (aHR = 1.55; 95%CI, 1.08-2.22), chronic obstructive pulmonary disease (COPD) and other allied conditions (aHR = 1.43; 95%CI, 1.00-2.06), and dyspnea and respiratory abnormalities (aHR = 1.29; 95%CI, 1.00-1.67); there was a suggestion of elevated risk for diseases classified as asthma and reactive airway diseases (aHR = 1.18; 95%CI, 0.98-1.41), including the specific condition, asthma (aHR = 1.35; 95%CI, 0.80-2.27), the symptom, shortness of breath (aHR = 1.50; 95%CI, 0.89-2.54), and the overall classification of chronic respiratory conditions (aHR = 1.18; 95%CI, 0.98-1.43). Exposure to both crude oil and dispersant was positively associated with elevated risk for shortness of breath (HR = 2.24; 95%CI, 1.09-4.64). CONCLUSIONS Among active duty Coast Guard personnel, oil spill clean-up exposures were associated with moderately increased risk for longer term respiratory conditions.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, MD, USA
| | - Dana L Thomas
- United States Coast Guard Headquarters, Directorate of Health, Safety, and Work Life, Washington, D.C., USA
| | - Jacob Collen
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John Barrett
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kate Christenbury
- Social & Scientific Systems, a DLH Corporation Holding Company, Durham, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Huang L, Cheng H, Ma S, He R, Gong J, Li G, An T. The exposures and health effects of benzene, toluene and naphthalene for Chinese chefs in multiple cooking styles of kitchens. ENVIRONMENT INTERNATIONAL 2021; 156:106721. [PMID: 34161905 DOI: 10.1016/j.envint.2021.106721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Commercial cooking has higher intensity and more severe instantaneous cooking pollution from volatile organic chemicals compared to home cooking, making health risk assessment of occupational exposure for chefs a priority. In this study, chefs from three cooking styles of kitchens, including steaming, frying, and grilling, were selected to investigate the external and internal exposures, health risks and effects of several typical aromatic hydrocarbons (benzene, toluene and naphthalene). Naphthalene was found to be the most concentrated contaminant in air samples among the different kitchens, while benzene had the lowest concentration. The concentration of toluene in frying kitchens was significantly higher than that in steaming kitchens. Air concentrations of toluene in frying kitchens, as well as benzene concentrations in grilling kitchens exceeded the standard level according to indoor air quality standard (GB/T18883-2002). Regarding the metabolites of pollutants in urine, the content of S-benzylmercapturic acids (S-BMA) for frying chefs was significantly higher than that for other cooking styles of chefs, which was consistent with the relatively higher air concentrations of toluene. There was a good correlation between internal and external exposure of the pollutants. The level of oxidative stress was influenced by 2-hydroxynaphthalene (2-OHN) and S-BMA, indicating the potential health risks of these occupational exposed chefs. This study indicates the need to improve the monitoring of typical aromatic hydrocarbons, as well as to investigate their potential health effects in large-scale groups, and improve the ventilation in kitchens.
Collapse
Affiliation(s)
- Lei Huang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haonan Cheng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruoying He
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
15
|
Qiu H, Bai CH, Chuang KJ, Fan YC, Chang TP, Yim SHL, Ho KF. Association of cardiorespiratory hospital admissions with ambient volatile organic compounds: Evidence from a time-series study in Taipei, Taiwan. CHEMOSPHERE 2021; 276:130172. [PMID: 33721630 DOI: 10.1016/j.chemosphere.2021.130172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
As important precursors of ozone and secondary organic aerosols, the harmful impact of exposure to ambient volatile organic compounds (VOCs) is of public health interest. However, few studies have investigated the health risks of numerous individual VOC species. This study linked the daily concentrations of 54 C2-C11 VOC species monitored from the Wanhua Photochemical Assessment Monitoring Station and hospital admissions for cardiorespiratory diseases in Taipei, Taiwan, from the National Health Insurance Research Database. A standard time-series approach entailing a series of sensitivity analyses was applied to investigate the short-term health risks of exposure to VOC subgroups and species. Consistent associations of all VOC subgroups and main species with chronic obstructive pulmonary disease (COPD) hospitalizations were demonstrated. In addition, associations of the C5-C6 alkanes, C2-C3 alkenes, toluene, and xylene with asthma hospitalizations were found, as were associations of aromatic hydrocarbons with hospitalizations for heart failure. An interquartile range increase in total VOC exposure at lag0 day (102.6 parts per billion carbon) was associated with increments of 1.84% (95% confidence interval: 0.54%-3.15%), 1.65% (0.71%-2.60%), and 1.21% (0.36%-2.07%) in hospitalizations for asthma, COPD, and heart failure, respectively. The effect estimates were robust with data excluding extreme values, the second pollutant adjustment for PM2.5 and O3, and the Bonferroni correction. The associations of ambient VOC exposure with cardiorespiratory hospitalizations in Taipei serve as a reference for VOC regulations and ozone control strategies.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Chen D, Liu R, Lin Q, Ma S, Li G, Yu Y, Zhang C, An T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. CHEMOSPHERE 2021; 275:130022. [PMID: 33647682 DOI: 10.1016/j.chemosphere.2021.130022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The dismantling of electrical and electronic waste (e-waste) can release various Volatile organic compounds (VOCs), impacting the surrounding ambient environment. We investigated the spatio-temporal characteristics and health risks of the ambient VOCs emitted in a typical e-waste dismantling region by conducting multi-site sampling campaigns in four seasons. The pollution of benzene, toluene, ethylbenzene, and xylenes (BTEX) in the e-waste dismantling park has relation to e-waste dismantling by seasonal trend analysis. The highest concentrations of most VOCs occurred in winter and autumn, while the lowest levels were observed in summer and spring. The spatial distribution map revealed the e-waste dismantling park to be a hotspot of BTEX, 1,2-dichloropropane (1,2-DCP), and 1,2-dichloroethane (1,2-DCA), while two major residential areas were also the hotspots of BTEX. The e-waste emission source contributed 20.14% to the total VOCs in the e-waste dismantling park, while it was absent in the major residential and rural areas. The cancer risk assessment showed that six VOCs exceeded 1.0 × 10-6 in the e-waste dismantling park, while only three or four compounds exceeded this risk in other areas. The noncancer risks of all compounds were below the safety threshold. This study supplements the existing knowledge on VOC pollution from e-waste dismantling and expands the research scope of chemical pollution caused by e-waste.
Collapse
Affiliation(s)
- Daijin Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chaosheng Zhang
- GIS Centre, Ryan Institute and School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|