1
|
Korade Z, Anderson AC, Sharma K, Tallman KA, Kim HYH, Porter NA, Gripp KW, Mirnics K. Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS). Mol Psychiatry 2024; 29:3942-3949. [PMID: 38844533 DOI: 10.1038/s41380-024-02622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 12/05/2024]
Abstract
A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/- genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/- HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/- heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kanika Sharma
- Mass Spectrometry Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, 19803, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
van der Ham M, Gerrits J, Prinsen B, van Hasselt P, Fuchs S, Jans J, Willems A, de Sain-van der Velden M. UPLC-Orbitrap-HRMS application for analysis of plasma sterols. Anal Chim Acta 2024; 1296:342347. [PMID: 38401937 DOI: 10.1016/j.aca.2024.342347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Correct identification and quantification of different sterol biomarkers can be used as a first-line diagnostic approach for inherited metabolic disorders (IMD). The main drawbacks of current methodologies are related to lack of selectivity and sensitivity for some of these compounds. To address this, we developed and validated two sensitive and selective assays for quantification of six cholesterol biosynthesis pathway intermediates (total amount (free and esterified form) of 7-dehydrocholesterol (7-DHC), 8-dehydrocholesterol (8-DHC), desmosterol, lathosterol, lanosterol and cholestanol), two phytosterols (total amount (free and esterified form) of campesterol and sitosterol) and free form of two oxysterols (7-ketocholesterol (7-KC) and 3β,5α,6β-cholestane-triol (C-triol). For quantification of four cholesterol intermediates we based our analytical approach on sterol derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). Quantification of all analytes is performed using UPLC coupled to an Orbitrap high resolution mass spectrometry (HRMS) system, with detection of target ions through full scan acquisition using positive atmospheric pressure chemical ionization (APCI) mode. UPLC and MS parameters were optimized to achieve high sensitivity and selectivity. Analog stable isotope labeled for each compound was used for proper quantification and correction for recovery, matrix effects and process efficiency. Precision (2.4%-12.3% inter-assay variation), lower limit of quantification (0.027 nM-50.5 nM) and linearity (5.5 μM (R2 0.999) - 72.3 μM (R2 0.997)) for phyto- and oxysterols were determined. The diagnostic potential of these two assays in a cohort of patients (n = 31, 50 samples) diagnosed with IMD affecting cholesterol and lysosomal/peroxisomal homeostasis is demonstrated.
Collapse
Affiliation(s)
- Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Berthil Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Peter van Hasselt
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Sabine Fuchs
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Anke Willems
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | | |
Collapse
|
3
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Mennen R, Hallmark N, Pallardy M, Bars R, Tinwell H, Piersma A. Genome-wide expression screening in the cardiac embryonic stem cell test shows additional differentiation routes that are regulated by morpholines and piperidines. Curr Res Toxicol 2022; 3:100086. [PMID: 36157598 PMCID: PMC9489494 DOI: 10.1016/j.crtox.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- R.H. Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N. Hallmark
- Bayer AG Crop Science Division, Monheim, Germany
| | - M. Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM UMR996, Châtenay-Malabry 92296, France
| | - R. Bars
- Bayer Crop Science, Sophia-Antipolis, France
| | - H. Tinwell
- Bayer Crop Science, Sophia-Antipolis, France
| | - A.H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
5
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
6
|
Petricca S, Celenza G, Luzi C, Cinque B, Lizzi AR, Franceschini N, Festuccia C, Iorio R. Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells. Int J Mol Sci 2022; 23:ijms23105429. [PMID: 35628239 PMCID: PMC9140920 DOI: 10.3390/ijms23105429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.
Collapse
Affiliation(s)
- Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
- Correspondence: ; Tel./Fax: +39-086-243-3443
| |
Collapse
|
7
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
8
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
9
|
Gene regulation by morpholines and piperidines in the cardiac embryonic stem cell test. Toxicol Appl Pharmacol 2021; 433:115781. [PMID: 34737147 DOI: 10.1016/j.taap.2021.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.
Collapse
|
10
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
11
|
Genaro-Mattos TC, Klingelsmith KB, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, Mirnics K. Sterol Biosynthesis Inhibition in Pregnant Women Taking Prescription Medications. ACS Pharmacol Transl Sci 2021; 4:848-857. [PMID: 33860207 DOI: 10.1021/acsptsci.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
12
|
Tallman KA, Allen LB, Klingelsmith KB, Anderson A, Genaro-Mattos TC, Mirnics K, Porter NA, Korade Z. Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis. ACS Chem Neurosci 2021; 12:735-745. [PMID: 33528983 PMCID: PMC7977035 DOI: 10.1021/acschemneuro.0c00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | |
Collapse
|