1
|
Khatib CM, Klein-Petersen AW, Rønnstad ATM, Egeberg A, Christensen MO, Silverberg JI, Thomsen SF, Irvine AD, Thyssen JP. Increased loss-of-function filaggrin gene mutation prevalence in atopic dermatitis patients across northern latitudes indicates genetic fitness: A systematic review and meta-analysis. Exp Dermatol 2024; 33:e15130. [PMID: 38989976 DOI: 10.1111/exd.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Loss-of-function (LoF) mutations in the filaggrin gene (FLG) constitute the strongest genetic risk for atopic dermatitis (AD). A latitude-dependent difference in the prevalence of LoF FLG mutations was systematically evaluated. A systematic review and meta-analysis were performed to estimate the prevalence of LoF FLG mutations in AD patients and the general population by geography and ethnicity. Risk of bias was assessed by Newcastle-Ottawa Scale and Jadad score. StatsDirect, version 3 software was used to calculate all outcomes. PubMed and EMBASE were searched until 9th December 2021. Studies were included if they contained data on the prevalence of LoF FLG mutations in AD patients or from the general population or associations between AD and LoF FLG mutations and were authored in English. Overall, 248 studies and 229 310 AD patients and individuals of the general population were included in the quantitative analysis. The prevalence of LoF FLG mutations was 19.1% (95% CI, 17.3-21.0) in AD patients and 5.8% (95% CI, 5.3-6.2) in the general population. There was a significant positive association between AD and LoF FLG mutations in all latitudes in the Northern hemisphere, but not in all ethnicities. The prevalence of LoF FLG mutations became gradually more prevalent in populations residing farther north of the Equator but was negligible in Middle Easterners and absent in most African populations. FLG LoF mutations are common and tend to increase with northern latitude, suggesting potential clinical implications for future AD management. The existence of possible genetic fitness from FLG LoF mutations remains unknown.
Collapse
Affiliation(s)
- Casper Milde Khatib
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Alexander Egeberg
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Simon Francis Thomsen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
2
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Liljedahl ER, Gliga A, de Paula HK, Engfeldt M, Julander A, Lidén C, Lindh C, Broberg K. Inflammation-related proteins in blood after dermal exposure to some common chemicals depend on the skin barrier gene filaggrin - a human experimental study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104346. [PMID: 38135200 DOI: 10.1016/j.etap.2023.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Filaggrin (FLG), a skin barrier protein, is associated with higher dermal uptake of some chemicals in carriers of loss-of-function (null) mutations. This study investigates FLG mutations and systemic effects following dermal exposure to chemicals. Individuals (n = 23 FLG null, n = 31 FLG wt) were simultaneously exposed to pyrimethanil, pyrene, oxybenzone, and nickel ions for 4 h. Pre- and post-exposure, 25-hydroxyvitamin D3 (25(OH)D3, LC-MS/MS) and 92 inflammation-related proteins (proximity-extension assay) were measured. FLG null carriers exhibited significantly higher 25(OH)D3 concentrations than wt carriers, both pre- and post-exposure. Eleven proteins differed in abundance post- vs pre-exposure among FLG null carriers, and 22 proteins among wt carriers (three proteins overlapped). Twelve proteins showed median differences (post- vs pre-exposure) between FLG null and wt carriers. Overall, FLG null carriers showed an increase, while FLG wt carriers showed a decrease in inflammation-related proteins. These findings suggest FLG-dependent differences in susceptibility to systemic effects following simultaneous dermal chemical exposure.
Collapse
Affiliation(s)
- Emelie Rietz Liljedahl
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anda Gliga
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Korres de Paula
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Anneli Julander
- Sustainable Working life, IVL Swedish Environmental Research Institute, Stockholm, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carola Lidén
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Baur R, Kashon M, Lukomska E, Weatherly LM, Shane HL, Anderson SE. Exposure to the anti-microbial chemical triclosan disrupts keratinocyte function and skin integrity in a model of reconstructed human epidermis. J Immunotoxicol 2023; 20:1-11. [PMID: 36524471 PMCID: PMC10364087 DOI: 10.1080/1547691x.2022.2148781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan is an anti-microbial chemical incorporated into products that are applied to the skin of healthcare workers. Exposure to triclosan has previously been shown to be associated with allergic disease in humans and impact the immune responses in animal models. Additionally, studies have shown that exposure to triclosan dermally activates the NLRP3 inflammasome and disrupts the skin barrier integrity in mice. The skin is the largest organ of the body and plays an important role as a physical barrier and regulator of the immune system. Alterations in the barrier and immune regulatory functions of the skin have been demonstrated to increase the risk of sensitization and development of allergic disease. In this study, the impact of triclosan exposure on the skin barrier and keratinocyte function was investigated using a model of reconstructed human epidermis. The apical surface of reconstructed human epidermis was exposed to triclosan (0.05-0.2%) once for 6, 24, or 48 h or daily for 5 consecutive days. Exposure to triclosan increased epidermal permeability and altered the expression of genes involved in formation of the skin barrier. Additionally, exposure to triclosan altered the expression patterns of several cytokines and growth factors. Together, these results suggest that exposure to triclosan impacts skin barrier integrity and function of human keratinocytes and suggests that these alterations may impact immune regulation.
Collapse
Affiliation(s)
- Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Michael Kashon
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
5
|
Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, Li C, Jian Z. Bioinspired polydopamine nanoparticles as efficient antioxidative and anti-inflammatory enhancers against UV-induced skin damage. J Nanobiotechnology 2023; 21:354. [PMID: 37775761 PMCID: PMC10543320 DOI: 10.1186/s12951-023-02107-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Excessive and prolonged ultraviolet radiation (UVR) exposure causes photodamage, photoaging, and photocarcinogenesis in human skin. Therefore, safe and effective sun protection is one of the most fundamental requirements. Living organisms tend to evolve various natural photoprotective mechanisms to avoid photodamage. Among them, melanin is the main functional component of the photoprotective system of human skin. Polydopamine (PDA) is synthesized as a mimic of natural melanin, however, its photoprotective efficiency and mechanism in protecting against skin damage and photoaging remain unclear. In this study, the novel sunscreen products based on melanin-inspired PDA nanoparticles (NPs) are rationally designed and prepared. We validate that PDA NPs sunscreen exhibits superior effects on photoprotection, which is achieved by the obstruction of epidermal hyperplasia, protection of the skin barrier, and resolution of inflammation. In addition, we find that PDA NPs are efficiently intake by keratinocytes, exhibiting robust ROS scavenging and DNA protection ability with minimal cytotoxicity. Intriguingly, PDA sunscreen has an influence on maintaining homeostasis of the dermis, displaying an anti-photoaging property. Taken together, the biocompatibility and full photoprotective properties of PDA sunscreen display superior performance to those of commercial sunscreen. This work provides new insights into the development of a melanin-mimicking material for sunscreens.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yuqi Zhou
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhaoting Jiang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenhui He
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Bo Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zeqian Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Tong Wu
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaoqi Chen
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
6
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
7
|
Gren L, Krais AM, Assarsson E, Broberg K, Engfeldt M, Lindh C, Strandberg B, Pagels J, Hedmer M. Underground emissions and miners' personal exposure to diesel and renewable diesel exhaust in a Swedish iron ore mine. Int Arch Occup Environ Health 2022; 95:1369-1388. [PMID: 35294627 PMCID: PMC9273542 DOI: 10.1007/s00420-022-01843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Underground diesel exhaust exposure is an occupational health risk. It is not known how recent intensified emission legislation and use of renewable fuels have reduced or altered occupational exposures. We characterized these effects on multipollutant personal exposure to diesel exhaust and underground ambient air concentrations in an underground iron ore mine. METHODS Full-shift personal sampling (12 workers) of elemental carbon (EC), nitrogen dioxide (NO2), polycyclic aromatic hydrocarbons (PAHs), and equivalent black carbon (eBC) was performed. The study used and validated eBC as an online proxy for occupational exposure to EC. Ambient air sampling of these pollutants and particle number size distribution and concentration were performed in the vicinity of the workers. Urine samples (27 workers) were collected after 8 h exposure and analyzed for PAH metabolites and effect biomarkers (8-oxodG for DNA oxidative damage, 4-HNE-MA for lipid peroxidation, 3-HPMA for acrolein). RESULTS The personal exposures (geometric mean; GM) of the participating miners were 7 µg EC m-3 and 153 µg NO2 m-3, which are below the EU occupational exposure limits. However, exposures up to 94 µg EC m-3 and 1200 µg NO2 m-3 were observed. There was a tendency that the operators of vehicles complying with sharpened emission legislation had lower exposure of EC. eBC and NO2 correlated with EC, R = 0.94 and R = 0.66, respectively. No correlation was found between EC and the sum of 16 priority PAHs (GM 1790 ng m-3). Ratios between personal exposures and ambient concentrations were similar and close to 1 for EC and NO2, but significantly higher for PAHs. Semi-volatile PAHs may not be effectively reduced by the aftertreatment systems, and ambient area sampling did not predict the personal airborne PAHs exposure well, neither did the slightly elevated concentration of urinary PAH metabolites correlate with airborne PAH exposure. CONCLUSION Miners' exposures to EC and NO2 were lower than those in older studies indicating the effect of sharpened emission legislation and new technologies. Using modern vehicles with diesel particulate filter (DPF) may have contributed to the lower ambient underground PM concentration and exposures. The semi-volatile behavior of the PAHs might have led to inefficient removal in the engines aftertreatment systems and delayed removal by the workplace ventilation system due to partitioning to indoor surfaces. The results indicate that secondary emissions can be an important source of gaseous PAH exposure in the mine.
Collapse
Affiliation(s)
- Louise Gren
- Ergonomics and Aerosol Technology, LTH, Lund University, 221 00 Lund, Sweden
| | - Annette M. Krais
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, LTH, Lund University, 221 00 Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| |
Collapse
|
8
|
Julander A, Rietz Liljedahl E, Korres de Paula H, Assarsson E, Engfeldt M, Littorin M, Shobana Anto C, Lidén C, Broberg K. Nickel penetration into stratum corneum in FLG null carriers - a human experimental study. Contact Dermatitis 2022; 87:154-161. [PMID: 35474514 PMCID: PMC9544599 DOI: 10.1111/cod.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Background The filaggrin gene (FLG) plays a role in skin diseases, with the skin barrier function being impaired in FLG null carriers. The role of FLG status in relation to nickel penetration into the skin remains unclear. Objectives To elucidate the association between FLG status and nickel penetration into stratum corneum (SC) in individuals without self‐reported history of nickel allergy. Methods Forty participants (23 FLG wt and 17 FLG null) were exposed to a nickel solution (80 μg/cm2) which was applied onto 2 × 2 cm on their left forearm. After 4 h, the area was tape‐stripped with 10 consecutive tapes. Nickel in each tape was quantified using inductively coupled plasma mass spectrometry. Results The average recovered nickel dose was 35%–48%. A tendency towards lower recovery was seen in FLG null carriers compared to FLG wt carriers, and lower recovery in those with history of skin and/or respiratory symptoms compared to those without such history. This was however not statistically significant. Conclusion FLG null carriers had less nickel recovered by tape strips compared with FLG wt carriers and, compared with individuals without a history of skin and/or respiratory symptoms, indicating higher nickel penetration into SC for FLG null carriers, but further studies are needed.
Collapse
Affiliation(s)
- Anneli Julander
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emelie Rietz Liljedahl
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helena Korres de Paula
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Margareta Littorin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christine Shobana Anto
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carola Lidén
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Podobas EI, Gutowska-Owsiak D, Moretti S, Poznański J, Kulińczak M, Grynberg M, Gruca A, Bonna A, Płonka D, Frączyk T, Ogg G, Bal W. Ni 2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Front Mol Biosci 2022; 9:828674. [PMID: 35359602 PMCID: PMC8960189 DOI: 10.3389/fmolb.2022.828674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/28/2023] Open
Abstract
Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.
Collapse
Affiliation(s)
- Ewa Izabela Podobas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sébastien Moretti
- SIB Swiss Institute of Bioinformatics, Vital-IT Team, Lausanne, Switzerland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz Kulińczak
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Baur R, Gandhi J, Marshall NB, Lukomska E, Weatherly LM, Shane HL, Hu G, Anderson SE. Dermal exposure to the immunomodulatory antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice. Toxicol Sci 2021; 184:223-235. [PMID: 34515797 DOI: 10.1093/toxsci/kfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triclosan is an antimicrobial chemical used in healthcare settings that can be absorbed through the skin. Exposure to triclosan has been positively associated with food and aeroallergy and asthma exacerbation in humans and, although not directly sensitizing, has been demonstrated to augment the allergic response in a mouse model of asthma. The skin barrier and microbiome are thought to play important roles in regulating inflammation and allergy and disruptions may contribute to development of allergic disease. To investigate potential connections of the skin barrier and microbiome with immune responses to triclosan, SKH1 mice were exposed dermally to triclosan (0.5-2%) or vehicle for up to 7 consecutive days. Exposure to 2% triclosan for 5-7 days on the skin was shown to increase trans-epidermal water loss levels. Seven days of dermal exposure to triclosan decreased filaggrin 2 and keratin 10 expression, but increased filaggrin and keratin 14 protein along with the danger signal S100a8 and interleukin-4. Dermal exposure to triclosan for 7 days also altered the alpha and beta diversity of the skin and gut microbiome. Specifically, dermal triclosan exposure increased the relative abundance of the Firmicutes family, Lachnospiraceae on the skin but decreased the abundance of Firmicutes family, Ruminococcaceae in the gut. Collectively, these results demonstrate that repeated dermal exposure to the antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice, suggesting that these changes may contribute to the increase in allergic immune responses following dermal exposure to triclosan.
Collapse
Affiliation(s)
- Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV.,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jasleen Gandhi
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Nikki B Marshall
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV.,WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| |
Collapse
|
11
|
Schmidt S. Uptake of Chemicals through the Skin: An Important Role of Filaggrin Gene Variants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:34003. [PMID: 33788614 PMCID: PMC8011662 DOI: 10.1289/ehp9024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
|