1
|
Upadhyay U, Kolla S, Maredupaka S, Priya S, Srinivasulu K, Chelluri LK. Development of an alginate-chitosan biopolymer composite with dECM bioink additive for organ-on-a-chip articular cartilage. Sci Rep 2024; 14:11765. [PMID: 38782958 PMCID: PMC11116456 DOI: 10.1038/s41598-024-62656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.
Collapse
Affiliation(s)
- Upasna Upadhyay
- Stem Cell Unit, Global Medical Education and Research Foundation (GMERF), Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, 522302, India
| | - Saketh Kolla
- Department of Orthopaedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Siddhartha Maredupaka
- Department of Orthopaedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Swapna Priya
- Stem Cell Unit, Global Medical Education and Research Foundation (GMERF), Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Kamma Srinivasulu
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, 522302, India
| | - Lakshmi Kiran Chelluri
- Advanced Diagnostics and Therapeutics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
- Academics and Research, Global Medical Education and Research Foundation (GMERF), Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| |
Collapse
|
2
|
Chiesa I, Esposito A, Vozzi G, Gottardi R, De Maria C. 4D bioprinted self-folding scaffolds enhance cartilage formation in the engineering of trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570378. [PMID: 38105967 PMCID: PMC10723422 DOI: 10.1101/2023.12.06.570378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Trachea defects that required surgical interventions are increasing in number in the recent years, especially for pediatric patients. However, current gold standards, such as biological grafts and synthetic prothesis, do not represent an effective solution, due to the lack of mimicry and regeneration capability. Bioprinting is a cutting-edge approach for the fabrication of biomimetic scaffold to empower tissue engineering toward trachea replacement. In this study, we developed a self-folding gelatin-based bilayer scaffold for trachea engineering, exploiting the 4D bioprinting approach, namely the fabrication of dynamic scaffolds, able to shape morph in a predefined way after the application of an environmental stimulus. Indeed, starting form a 2D flat position, upon hydration, this scaffold forms a closed tubular structure. An analytical model, based on Timoshenko's beam thermostats, was developed, and validated to predict the radius of curvature of the scaffold according to the material properties and the scaffold geometry. The 4D bioprinted structure was tested with airway fibroblast, lung endothelial cells and ear chondral progenitor cells (eCPCs) toward the development of a tissue engineered trachea. Cells were seeded on the scaffold in its initial flat position, maintained their position after the scaffold actuation and proliferated over or inside it. The ability of eCPCs to differentiate towards mature cartialge was evaluated. Interestingly, real-time PCR revealed that differentiating eCPCs on the 4D bioprinted scaffold promote healthy cartilage formation, if compared with eCPCs cultured on 2D static scaffold. Thus, eCPCs can perceive scaffold folding and its final curvature and to react to it, towards the formation of mature cartilage for the airway.
Collapse
|
3
|
Arangath A, Duffy N, Alexandrov S, James S, Neuhaus K, Murphy M, Leahy M. Nanosensitive optical coherence tomography for detecting structural changes in stem cells. BIOMEDICAL OPTICS EXPRESS 2023; 14:1411-1427. [PMID: 37078060 PMCID: PMC10110307 DOI: 10.1364/boe.485082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
Mesenchymal stromal cells (MSCs) are adult stem cells that have been widely investigated for their potential to regenerate damaged and diseased tissues. Multiple pre-clinical studies and clinical trials have demonstrated a therapeutic response following treatment with MSCs for various pathologies, including cardiovascular, neurological and orthopaedic diseases. The ability to functionally track cells following administration in vivo is pivotal to further elucidating the mechanism of action and safety profile of these cells. Effective monitoring of MSCs and MSC-derived microvesicles requires an imaging modality capable of providing both quantitative and qualitative readouts. Nanosensitive optical coherence tomography (nsOCT) is a recently developed technique that detects nanoscale structural changes within samples. In this study, we demonstrate for the first time, the capability of nsOCT to image MSC pellets following labelling with different concentrations of dual plasmonic gold nanostars. We show that the mean spatial period of MSC pellets increases following the labelling with increasing concentrations of nanostars. Additionally, with the help of extra time points and a more comprehensive analysis, we further improved the understanding of the MSC pellet chondrogenesis model. Despite the limited penetration depth (similar to conventional OCT), the nsOCT is highly sensitive in detecting structural alterations at the nanoscale, which may provide crucial functional information about cell therapies and their modes of action.
Collapse
Affiliation(s)
- Anand Arangath
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Niamh Duffy
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Soorya James
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary Murphy
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
- The Institute of Photonic Sciences (ICFO), Barcelona, Spain
| |
Collapse
|
4
|
Bedell ML, Wang Z, Hogan KJ, Torres AL, Pearce HA, Chim LK, Grande-Allen KJ, Mikos AG. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater 2023; 155:99-112. [PMID: 36384222 PMCID: PMC9805529 DOI: 10.1016/j.actbio.2022.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Extrusion bioprinted constructs for osteochondral tissue engineering were fabricated to study the effect of multi-material architecture on encapsulated human mesenchymal stem cells' tissue-specific matrix deposition and integration into an ex vivo porcine osteochondral explant model. Two extrusion fiber architecture groups with differing transition regions and degrees of bone- and cartilage-like bioink mixing were employed. The gradient fiber (G-Fib) architecture group showed an increase in chondral integration over time, 18.5 ± 0.7 kPa on Day 21 compared to 9.6 ± 1.6 kPa on Day 1 for the required peak push-out force, and the segmented fiber (S-Fib) architecture group did not, which corresponded to the increase in sulfated glycosaminoglycan deposition noted only in the G-Fib group and the staining for cellularity and tissue-specific matrix deposition at the fiber-defect boundary. Conversely, the S-Fib architecture was associated with significant mineralization over time, but the G-Fib architecture was not. Notably, both fiber groups also had similar chondral integration as a re-inserted osteochondral tissue control. While architecture did dictate differences in the cells' responses to their environment, architecture was not shown to distinguish a statistically significant difference in tissue integration via fiber push-out testing within a given time point or explant region. Use of this three-week osteochondral model demonstrates that these bioink formulations support the fabrication of cell-laden constructs that integrate into explanted tissue as capably as natural tissue and encapsulate osteochondral matrix-producing cells, and it also highlights the important role that spatial architecture plays in the engineering of multi-phasic tissue environments. STATEMENT OF SIGNIFICANCE: Here, an ex vivo model was used to interrogate fundamental questions about the effect of multi-material scaffold architectural choices on osteochondral tissue integration. Cell-encapsulating constructs resembling stratified osteochondral tissue were 3D printed with architecture consisting of either gradient transitions or segmented transitions between the bone-like and cartilage-like bioink regions. The printed constructs were assessed alongside re-inserted natural tissue plugs via mechanical tissue integration push-out testing, biochemical assays, and histology. Differences in osteochondral matrix deposition were observed based on architecture, and both printed groups demonstrated cartilage integration similar to the native tissue plug group. As 3D printing becomes commonplace within biomaterials and tissue engineering, this work illustrates critical 3D co-culture interactions and demonstrates the importance of considering architecture when interpreting the results of studies utilizing spatially complex, multi-material scaffolds.
Collapse
Affiliation(s)
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; NIBIB/NIH Center for Engineering Complex Tissues, USA.
| |
Collapse
|
5
|
[Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:470-478. [PMID: 35426288 PMCID: PMC9011064 DOI: 10.7507/1002-1892.202110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. METHODS The literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. RESULTS Articular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. CONCLUSION Due to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
Collapse
|
6
|
Jabbari E, Sepahvandi A. Decellularized Articular Cartilage Microgels as Microcarriers for Expansion of Mesenchymal Stem Cells. Gels 2022; 8:gels8030148. [PMID: 35323261 PMCID: PMC8949257 DOI: 10.3390/gels8030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional microcarriers used for expansion of human mesenchymal stem cells (hMSCs) require detachment and separation of the cells from the carrier prior to use in clinical applications for regeneration of articular cartilage, and the carrier can cause undesirable phenotypic changes in the expanded cells. This work describes a novel approach to expand hMSCs on biomimetic carriers based on adult or fetal decellularized bovine articular cartilage that supports tissue regeneration without the need to detach the expanded cells from the carrier. In this approach, the fetal or adult bovine articular cartilage was minced, decellularized, freeze-dried, ground, and sieved to produce articular cartilage microgels (CMGs) in a specified size range. Next, the hMSCs were expanded on CMGs in a bioreactor in basal medium to generate hMSC-loaded CMG microgels (CMG-MSCs). Then, the CMG-MSCs were suspended in sodium alginate, injected in a mold, crosslinked with calcium chloride, and incubated in chondrogenic medium as an injectable cellular construct for regeneration of articular cartilage. The expression of chondrogenic markers and compressive moduli of the injectable CMG-MSCs/alginate hydrogels incubated in chondrogenic medium were higher compared to the hMSCs directly encapsulated in alginate hydrogels.
Collapse
|
7
|
Human Umbilical Cord Mesenchymal Stem Cells in Combination with Hyaluronic Acid Ameliorate the Progression of Knee Osteoarthritis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study is to evaluate the feasibility and usefulness of the human umbilical cord mesenchymal stem cells (hUC-MSCs) and hyaluronan acid (HA) combination to attenuate osteoarthritis progression in the knee while simultaneously providing some insights on the mitigation mechanism. In vitro, the effect of hUC-MSCs with HA treatment on chondrocyte cell viability and the cytokine profile were analyzed. Additionally, the antioxidation capability of hUC-MSCs-CM (conditioned medium) with HA towards H2O2-induced chondrocyte cell damage was evaluated. The HA addition increased the hUC-MSC antioxidation capability and cytokine secretion, such as Dickkopf-related protein 1 (DKK-1) and hepatocyte growth factor (HGF), while no adverse effect on the cell viability was observed. In vivo, the intra-articular injection of hUC-MSCs with HA to a mono-iodoacetate (MIA)-induced knee osteoarthritis (KOA) rat model was performed and investigated. Attenuation of the KOA progression in the MIA-damaged rat model was seen best in hUC-MSCs with a HA combination compared to the vehicle control or each individual element. Combining hUC-MSCs and HA resulted in a synergistic effect, such as increasing the cell therapeutic capability while incurring no observable adverse effects. Therefore, this combinatorial therapy is feasible and has promising potential to ameliorate KOA progression.
Collapse
|
8
|
Hiramoto K, Ino K, Komatsu K, Nashimoto Y, Shiku H. Electrochemiluminescence imaging of respiratory activity of cellular spheroids using sequential potential steps. Biosens Bioelectron 2021; 181:113123. [PMID: 33714859 DOI: 10.1016/j.bios.2021.113123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
The respiratory activity of cultured cells can be electrochemically monitored using scanning electrochemical microscopy (SECM) with high spatial resolution. However, in SECM, the electrode takes a long time to scan, limiting simultaneous measurements with large biological samples such as cell spheroids. Therefore, for rapid electrochemical imaging, a novel strategy is needed. Herein, we report electrochemiluminescence (ECL) imaging of spheroid respiratory activity for the first time using sequential potential steps. L-012, a luminol analog, was used as an ECL luminophore, and H2O2, a sensitizer for ECL of L-012, was generated by the electrochemical reduction of dissolved O2. The ECL imaging visualized spheroid respiratory activity-evidenced by ECL suppression-corresponding to O2 distribution around the spheroids. This method enabled the time-lapse imaging of respiratory activity in multiple spheroids with good spatial resolution comparable to that of SECM. Our work provides a promising high-throughput imaging strategy for elucidating spheroid cellular dynamics.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Japan.
| | - Keika Komatsu
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Japan.
| |
Collapse
|
9
|
Pattanashetti NA, Torvi AI, Shettar AK, Gai PB, Kariduraganavar MY. Polysaccharides as Novel Materials for Tissue Engineering Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Köhnke R, Ahlers MO, Birkelbach MA, Ewald F, Krueger M, Fiedler I, Busse B, Heiland M, Vollkommer T, Gosau M, Smeets R, Rutkowski R. Temporomandibular Joint Osteoarthritis: Regenerative Treatment by a Stem Cell Containing Advanced Therapy Medicinal Product (ATMP)-An In Vivo Animal Trial. Int J Mol Sci 2021; 22:E443. [PMID: 33466246 PMCID: PMC7795212 DOI: 10.3390/ijms22010443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a chronic degenerative disease that is often characterized by progressive impairment of the temporomandibular functional unit. The aim of this randomized controlled animal trial was a comparative analysis regarding the chondroregenerative potency of intra-articular stem/stromal cell therapy. Four weeks after combined mechanical and biochemical osteoarthritis induction in 28 rabbits, therapy was initiated by a single intra-articular injection, randomized into the following groups: Group 1: AB Serum (ABS); Group 2: Hyaluronic acid (HA); Group 3: Mesenchymal stromal cells (STx.); Group 4: Mesenchymal stromal cells in hyaluronic acid (HA + STx.). After another 4 weeks, the animals were euthanized, followed by histological examination of the removed joints. The histological analysis showed a significant increase in cartilage thickness in the stromal cell treated groups (HA + STx. vs. ABS, p = 0.028; HA + ST.x vs. HA, p = 0.042; STx. vs. ABS, p = 0.036). Scanning electron microscopy detected a similar heterogeneity of mineralization and tissue porosity in the subchondral zone in all groups. The single intra-articular injection of a stem cell containing, GMP-compliant advanced therapy medicinal product for the treatment of iatrogen induced osteoarthritis of the temporomandibular joint shows a chondroregenerative effect.
Collapse
Affiliation(s)
- Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Marcus Oliver Ahlers
- Department of Prosthetic Dentistry School of Dental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- CMD-Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Moritz Alexander Birkelbach
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany;
| | | | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Max Heiland
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 14197 Berlin, Germany;
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| |
Collapse
|
11
|
Kisiday JD, Schwartz JA, Tangtrongsup S, Goodrich LR, Grande DA. Culture Conditions that Support Expansion and Chondrogenesis of Middle-Aged Rat Mesenchymal Stem Cells. Cartilage 2020; 11:364-373. [PMID: 30056741 PMCID: PMC7298599 DOI: 10.1177/1947603518790047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. DESIGN MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. RESULTS During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. CONCLUSIONS These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.
Collapse
Affiliation(s)
- John D. Kisiday
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA,John D. Kisiday, Orthopaedic Research
Center, Department of Clinical Sciences, Colorado State University, Campus
Delivery 1678, Fort Collins, CO 80523, USA.
| | - John A. Schwartz
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | | | - Laurie R. Goodrich
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | - Daniel A. Grande
- The Feinstein Institute for Medical
Research, North Shore–LIJ Health System, Manhasset, NY, USA
| |
Collapse
|
12
|
Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 2020; 10:8277. [PMID: 32427838 PMCID: PMC7237416 DOI: 10.1038/s41598-020-65050-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
For the generation of multi-layered full thickness osteochondral tissue substitutes with an individual geometry based on clinical imaging data, combined extrusion-based 3D printing (3D plotting) of a bioink laden with primary chondrocytes and a mineralized biomaterial phase was introduced. A pasty calcium phosphate cement (CPC) and a bioink based on alginate-methylcellulose (algMC) - both are biocompatible and allow 3D plotting with high shape fidelity - were applied in monophasic and combinatory design to recreate osteochondral tissue layers. The capability of cells reacting to chondrogenic biochemical stimuli inside the algMC-based 3D hydrogel matrix was assessed. Towards combined osteochondral constructs, the chondrogenic fate in the presence of CPC in co-fabricated and biphasic mineralized pattern was evaluated. Majority of expanded and algMC-encapsulated cells survived the plotting process and the cultivation period, and were able to undergo redifferentiation in the provided environment to produce their respective extracellular matrix (ECM) components (i.e. sulphated glycosaminoglycans, collagen type II), examined after 3 weeks. The presence of a mineralized zone as located in the physiological calcified cartilage region suspected to interfere with chondrogenesis, was found to support chondrogenic ECM production by altering the ionic concentrations of calcium and phosphorus in in vitro culture conditions.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Evaluation of alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Cell Tissue Res 2020; 381:255-272. [PMID: 32405685 DOI: 10.1007/s00441-020-03216-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising cell candidates for cartilage regeneration. Furthermore, it is important to control the cell-matrix interactions that have a direct influence on cell functions. Providing an appropriate microenvironment for cell differentiation in response to exogenous stimuli is a critical step towards the clinical utilization of MSCs. In this study, hydrogels consisted of different proportions of alginates that were modified using gelatin, collagen type I and arginine-glycine-aspartic acid (RGD) and were evaluated regarding their effects on mesenchymal stem cells. The effect of applying hydrostatic pressure on MSCs encapsulated in collagen-modified alginate with and without chondrogenic medium was evaluated 7, 14 and 21 days after culture, which is a comprehensive evaluation of chondrogenesis in 3D hydrogels with mechanical and chemical stimulants. Alcian blue, safranin O and dimethyl methylene blue (DMMB) staining showed the chondrogenic phenotype of cells seeded in the collagen- and RGD-modified alginate hydrogels with the highest intensity after 21 days of culture. The results of real-time PCR for cartilage-specific extracellular matrix genes indicated the chondrogenic differentiation of MSCs in all hydrogels. Also, the synergic effects of chemical and mechanical stimuli are indicated. The highest expression levels of the studied genes were observed in the cells embedded in collagen-modified alginate by loading after 14 days of exposure to the chondrogenic medium. The effect of using IHP on encapsulated MSCs in modified alginate with collagen type I is equal or even higher than using TGF-beta on encapsulated cells. The results of immunohistochemical assessments also confirmed the real-time PCR data.
Collapse
|
14
|
|
15
|
Ringe J, Hemmati-Sadeghi S, Fröhlich K, Engels A, Reiter K, Dehne T, Sittinger M. CCL25-Supplemented Hyaluronic Acid Attenuates Cartilage Degeneration in a Guinea Pig Model of Knee Osteoarthritis. J Orthop Res 2019; 37:1723-1729. [PMID: 30977553 DOI: 10.1002/jor.24312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/04/2023]
Abstract
There is evidence that the application of mesenchymal stromal cells (MSCs) counteracts osteoarthritis (OA) progression. However, the prospect of extracting and expanding these cells might be limited. The aim of this study was to investigate whether hyaluronic acid (HA) supplemented with MSC-recruiting chemokine C-C motif ligand 25 (CCL25) can influence the natural course of spontaneous OA in the guinea pig. CCL25 concentration in synovial fluid (SF) was quantified with enzyme-linked immunosorbent assay. Boyden chamber cell migration assay was used to test CCL25-mediated migration of guinea pig MSC. Forty-nine 11-month-old male guinea pigs were divided into seven groups. The main treatments consisted of five intra-articular injections of HA in pure form and in combination with three doses of CCL25 (63, 693, and 6,993 pg) given at a weekly interval. The severity of cartilage damage was assessed by using a modified Mankin score. The measured average physiological concentration of CCL25 in SF of animals is 85 ± 39 pg/ml. MSC showed a 3.2-fold increase in cell migration at 1,000 nM CCL25 in vitro demonstrating the biological migratory activity of CCL25 on these cells. In vivo, treatment with HA alone did not reduce OA progression. Similarly, OA scores were not found significantly reduced after treatment with 63 pg CCL25 + HA. However, when compared to pure HA, treatment with 693 pg CCL25 + HA and 6,993 pg CCL25 + HA significantly reduced the OA score from 10.1 to 7.4 (-28%) and 8.4 (-20%), respectively. These data suggest that intra-articular injections of HA supplemented with CCL25 attenuates OA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1723-1729, 2019.
Collapse
Affiliation(s)
- Jochen Ringe
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Kristin Fröhlich
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Engels
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Katja Reiter
- Julius Wolff Institute and Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Föhrer Straße 15, 13353, Berlin, Germany
| | - Tilo Dehne
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Sittinger
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
16
|
Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal Biochem 2019; 574:31-33. [DOI: 10.1016/j.ab.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 11/20/2022]
|
17
|
Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res Ther 2019; 10:72. [PMID: 30837004 PMCID: PMC6402115 DOI: 10.1186/s13287-019-1176-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background The body is unable to repair and regenerate large area bone defects. Moreover, the repair capacity of articular cartilage is very limited. There has long been a lack of effective treatments for osteochondral lesions. The engineered tissue with biphase synthetic for osteochondral repair has become one of the hot research fields over the past few years. In this study, an integrated biomanufacturing platform was constructed with bone marrow mesenchymal stem cells (BMSCs)/porous tantalum (pTa) associated with chondrocytes/collagen membranes (CM) to repair large osteochondral defects in load-bearing areas of goats. Methods Twenty-four goats with a large osteochondral defect in the femoral heads of the left hind legs were randomly divided into three groups: eight were treated with chondrocytes/CM-BMSCs/pTa, eight were treated with pure CM-pTa composite, and the other eight goats were untreated. The repair effect was assessed by X-ray, gross observation, and histomorphology for 16 weeks after the operation. In addition, the biocompatibility of chondrocytes/CM-BMSCs/pTa was observed by flow cytometry, CCK8, immunocytochemistry, and Q-PCR. The characteristics of the chondrocytes/CM-BMSCs/pTa were evaluated using both scanning electron microscopy and mechanical testing machine. Results The integrated repair material consists of pTa, injectable fibrin sealant, and CM promoted adhesion and growth of BMSCs and chondrocytes. pTa played an important role in promoting the differentiation of BMSCs into osteoblasts. Three-dimensional CM maintained the phenotype of chondrocytes successfully and expressed chondrogenic genes highly. The in vivo study showed that after 16 weeks from implantation, osteochondral defects in almost half of the femoral heads had been successfully repaired by BMSC-loaded pTa associated with biomimetic 3D collagen-based scaffold. Conclusions The chondrocytes/CM-BMSCs/pTa demonstrated significant therapeutic efficacy in goat models of large osteochondral defect. This provides a novel therapeutic strategy for large osteochondral lesions in load-bearing areas caused by severe injury, necrosis, infection, degeneration, and tumor resection with a high profile of safety, effectiveness, and simplicity.
Collapse
|
18
|
Moeinzadeh S, Monavarian M, Kader S, Jabbari E. Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices. Tissue Eng Part A 2018; 25:234-247. [PMID: 30146939 DOI: 10.1089/ten.tea.2018.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT The higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Mehri Monavarian
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Safaa Kader
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina.,2 Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Esmaiel Jabbari
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
19
|
Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018. [PMID: 30366400 DOI: 10.3390/ijms19113322.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
|
20
|
Roffi A, Nakamura N, Sanchez M, Cucchiarini M, Filardo G. Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018; 19:ijms19113322. [PMID: 30366400 PMCID: PMC6274908 DOI: 10.3390/ijms19113322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
Affiliation(s)
- Alice Roffi
- Laboratory of Nano-Biotechnology-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 590-0496, Japan.
| | - Mikel Sanchez
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, 01008 Vitoria-Gasteiz, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
21
|
Christiansen-Weber T, Noskov A, Cardiff D, Garitaonandia I, Dillberger A, Semechkin A, Gonzalez R, Kern R. Supplementation of specific carbohydrates results in enhanced deposition of chondrogenic-specific matrix during mesenchymal stem cell differentiation. J Tissue Eng Regen Med 2018; 12:1261-1272. [PMID: 29490116 DOI: 10.1002/term.2658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 11/12/2022]
Abstract
Repair or regeneration of hyaline cartilage in knees, shoulders, intervertebral discs, and other assorted joints is a major therapeutic target. To date, therapeutic strategies utilizing chondrocytes or mesenchymal stem cells are limited by expandability or the generation of mechanically inferior cartilage. Our objective is to generate robust cartilage-specific matrix from human mesenchymal stem cells suitable for further therapeutic development. Human mesenchymal stem cells, in an alginate 3D format, were supplied with individual sugars and chains which comprise the glycan component of proteoglycans in articular cartilage (galactose, hyaluronic acid, glucuronic acid, and xylose) during chondrogenesis. After an initial evaluation for proteoglycan deposition utilizing Alcian blue, the tissue was further evaluated for viability, structural elements, and hypertrophic status. With the further addition of serum, a substantial increase was observed in viability, the amount of proteoglycan deposition, glycosaminoglycan production, and an enhancement of Hyaluronic Acid, Collagen II and Aggrecan deposition. Suppression of hypertrophic markers (COL1A1, COL10A1, MMP13, and RUNX2) was also observed. When mesenchymal stem cells were supplied with the raw building materials of proteoglycans and a limited amount of serum during chondrogenesis, it resulted in the generation of viable hyaline-like cartilage with deposition of structural components which exceeded previously reported in vitro-based cartilage.
Collapse
Affiliation(s)
| | | | - Dylan Cardiff
- International Stem Cell Corporation, Carlsbad, CA, USA
| | | | | | | | | | - Russell Kern
- International Stem Cell Corporation, Carlsbad, CA, USA
| |
Collapse
|
22
|
Weber C, Gokorsch S, Czermak P. Expansion and Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Int J Artif Organs 2018; 30:611-8. [PMID: 17674338 DOI: 10.1177/039139880703000709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of human mesenchymal stem cells (hMSC) to differentiate into various types of mesenchymal tissue, such as chondrocytes, makes them a potential cell source in cartilage tissue engineering. Because of the requirement of high cell amounts for the generation of cartilage implants or for the extensive experimental studies to investigate the culture parameters, the initial cells have to be expanded, which leads to high population doubling numbers. It is known that hMSC can differentiate into chondrocytes at least up to the 15th population doubling. To monitor the differentiation status, the protein MIA (melanoma inhibitory activity), which is only synthesized by malignant melanomas and chondrocytes, can be used. In this study the chondrogenic differentiation potential of hMSC beyond the 15th population doubling was investigated using MIA as a chondrocyte marker. A chondrogenic potential of hMSC at higher population doubling numbers may be of interest due to the requirement of less frequent isolations of cells. Therefore hMSC were cultured in a monolayer until the 37th population doubling. Cells of different passages were cultured as pellets for two weeks in transforming growth factor (TGF)-β3 containing differentiation medium. The MIA contents in medium on the last three cultivation days were measured for each case using an MIA-ELISA-kit. A significant difference between MIA content in medium of the pellet and non-stimulated monolayer reference cultures was detectable until the 32nd population doubling. In addition, the hMSC were seeded at lower densities to investigate whether the cells may be expanded faster and with less amount of work due to higher population doubling numbers per passage. The reduced inoculation density led to an increased growth rate. (Int J Artif Organs 2007; 30: 611–8)
Collapse
Affiliation(s)
- C Weber
- Department of Biotechnology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | |
Collapse
|
23
|
Rohani L, Karbalaie K, Vahdati A, Hatami M, Nasr-Esfahani M, Baharvand H. Embryonic Stem Cell Sphere: A Controlled Method for Production of Mouse Embryonic Stem Cell Aggregates for Differentiation. Int J Artif Organs 2018; 31:258-65. [DOI: 10.1177/039139880803100310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives Embryonic stem cells (ESCs) are of significant interest as a renewable source of nonproliferating cells. Differentiation of ESCs is initiated by the formation of embryoid bodies (EBs). Standard methods of EB formation are limited in their production capacity, in any variations in EB size and formation of EBs through frequent passages. Here we have reported the utility of a microencapsulation technique for overcoming these limitations by mass production of mouse ESCs in alginate beads called ESC spheres. Methods The mouse ESCs were encapsulated in 1.2% alginate solution and cocultured on a feeder layer. The cells were evaluated by flow cytometry, in vitro differentiation, immunofluorescence, and reverse transcriptase polymerase chain reaction (RT-PCR). Results Analysis of encapsulated ESC spheres by flow cytometry showed similar percentages of Oct-4 and stage-specific embryonic antigen-1 (SSEA-1) expression in comparison with routine culture of ESCs. Moreover, the ESC spheres maintained a pluripotency potential which was comparable with ESCs cultured on feeder cells directly, as demonstrated by immunofluorescence and RT-PCR. Conclusions The results demonstrated that alginate encapsulation as a simple bioreactor, provides a scalable system for mass undifferentiated ESC sphere production with similar sizes and without the need for frequent passages for differentiation and clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- L. Rohani
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
- Department of Biology, Esfahan University, Esfahan - Iran
| | - K. Karbalaie
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
| | - A. Vahdati
- Department of Biology, Esfahan University, Esfahan - Iran
| | - M. Hatami
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Tehran - Iran
| | - M.H. Nasr-Esfahani
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
| | - H. Baharvand
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Tehran - Iran
- Department of Developmental Biology, University of Science and Culture, Tehran - Iran
| |
Collapse
|
24
|
Vo TN, Tabata Y, Mikos AG. Effects of cellular parameters on the in vitro osteogenic potential of dual-gelling mesenchymal stem cell-laden hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 27:1277-90. [PMID: 27328947 DOI: 10.1080/09205063.2016.1195157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This work investigated the effects of cellular encapsulation density and differentiation stage on the osteogenic capacity of injectable, dual physically and chemically gelling hydrogels comprised of thermogelling macromers and polyamidoamine crosslinkers. Undifferentiated and osteogenically predifferentiated mesenchymal stem cells (MSCs) were encapsulated within 20 wt% composite hydrogels with gelatin microparticles at densities of six or 15 million cells/mL. We hypothesized that a high encapsulation density and predifferentiation would promote increased cellular interaction and accelerate osteogenesis, leading to enhanced osteogenic potential in vitro. Hydrogels were able to maintain the viability of the encapsulated cells over a period of 28 days, with the high encapsulation density and predifferentiation group possessing the highest DNA content at all time points. Early alkaline phosphatase activity and mineralization were promoted by encapsulation density, whereas this effect by predifferentiation was only observed in the low seeding density groups. Both parameters only demonstrated short-lived effects when examined independently, but jointly led to greater levels of alkaline phosphatase activity and mineralization. The combined effects suggest that there may be optimal encapsulation densities and differentiation periods that need to be investigated to improve MSCs for biomaterial-based therapeutics in bone tissue engineering.
Collapse
Affiliation(s)
- Tiffany N Vo
- a Department of Bioengineering , Rice University , Houston , TX , USA
| | - Yasuhiko Tabata
- b Department of Biomaterials , Institute for Frontier Medical Sciences, Kyoto University , Kyoto , Japan
| | - Antonios G Mikos
- a Department of Bioengineering , Rice University , Houston , TX , USA.,c Department of Chemical and Biomolecular Engineering , Rice University , Houston , TX , USA
| |
Collapse
|
25
|
Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3D bioprinting can potentially enable the engineering of biological constructs mimicking the complex geometry, composition, architecture and mechanical properties of different tissues and organs. Integral to the successful bioprinting of functional articular cartilage and meniscus is the identification of suitable bioinks and cell sources to support chondrogenesis or fibrochondrogenesis, respectively. Such bioinks must also possess the appropriate rheological properties to be printable and support the generation of complex geometries. This review will outline the parameters required to develop bioinks for such applications and the current recent advances in 3D bioprinting of functional meniscus and articular cartilage. The paper will conclude by discussing key scientific and technical hurdles in this field and by defining future research directions for cartilage and meniscus bioprinting.
Collapse
Affiliation(s)
- Susan E Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Sun AX, Lin H, Fritch MR, Shen H, Alexander PG, DeHart M, Tuan RS. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomater 2017; 58:302-311. [PMID: 28611002 DOI: 10.1016/j.actbio.2017.06.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-l-lactic acid/polyethylene glycol/poly-l-lactic acid] (PLLA-PEG 1000) and [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (∼1500 to 1800kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50×106/mL) and hydrogel stiffnesses (∼150kPa to∼1500kPa Young's moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20×106cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. STATEMENT OF SIGNIFICANCE Engineering cartilage with physiologically relevant mechanical properties for point-of-care applications represents a major challenge in orthopedics, given the generally low mechanical strengths of traditional hydrogels used in cartilage tissue engineering. In this study, we characterized a new material that possesses high mechanical strength similar to native cartilage, and determined the optimal cell density and scaffold stiffness to achieve the most efficient chondrogenic response from seeded human bone marrow stem cells. Results show robust chondrogenesis and strongly suggest the potential of this material to be applied clinically for point-of-care repair of cartilage defects.
Collapse
Affiliation(s)
- Aaron X Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Pete G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Michael DeHart
- Department of Biology, University of Pittsburgh Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA.
| |
Collapse
|
27
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
28
|
Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 3D-Bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells. ACS Biomater Sci Eng 2016; 2:1732-1742. [DOI: 10.1021/acsbiomaterials.6b00196] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lokesh Karthik Narayanan
- Edward
P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, Raleigh, North Carolina 27695, United States
- Center
for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Pedro Huebner
- Edward
P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, Raleigh, North Carolina 27695, United States
- Center
for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew B. Fisher
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint
Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Engineering Building
III, Raleigh, North Carolina 27695, United States
- Department
of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey T. Spang
- Department
of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Binil Starly
- Edward
P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, Raleigh, North Carolina 27695, United States
- Center
for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint
Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Engineering Building
III, Raleigh, North Carolina 27695, United States
| | - Rohan A. Shirwaiker
- Edward
P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, Raleigh, North Carolina 27695, United States
- Center
for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint
Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Engineering Building
III, Raleigh, North Carolina 27695, United States
| |
Collapse
|
29
|
Pustlauk W, Paul B, Gelinsky M, Bernhardt A. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:190-198. [PMID: 27127044 DOI: 10.1016/j.msec.2016.03.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/28/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Abstract
Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels.
Collapse
Affiliation(s)
- W Pustlauk
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Medical Faculty Carl Gustav Carus of Technische Universität Dresden, Fetscher Str. 74, 01307 Dresden, Germany
| | - B Paul
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Medical Faculty Carl Gustav Carus of Technische Universität Dresden, Fetscher Str. 74, 01307 Dresden, Germany
| | - M Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Medical Faculty Carl Gustav Carus of Technische Universität Dresden, Fetscher Str. 74, 01307 Dresden, Germany
| | - A Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Medical Faculty Carl Gustav Carus of Technische Universität Dresden, Fetscher Str. 74, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits. PLoS One 2016; 11:e0149835. [PMID: 26915044 PMCID: PMC4767225 DOI: 10.1371/journal.pone.0149835] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo.
Collapse
Affiliation(s)
- En-Rung Chiang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsiao-Li Ma
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jung-Pan Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chien-Lin Liu
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Tain-Hsiung Chen
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Integrative Stem Cell Center & Department of Orthopedics, China Medical University Hospital, Taichung 404, Taiwan
- Institute of Clinical Medicine, China Medical University, Taichung 404, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
32
|
Oehme D, Ghosh P, Goldschlager T, Itescu S, Shimon S, Wu J, McDonald C, Troupis JM, Rosenfeld JV, Jenkin G. Reconstitution of degenerated ovine lumbar discs by STRO-3-positive allogeneic mesenchymal precursor cells combined with pentosan polysulfate. J Neurosurg Spine 2016; 24:715-26. [PMID: 26799116 DOI: 10.3171/2015.8.spine141097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model. METHODS Twenty-four sheep had annular incisions made at L2-3, L3-4, and L4-5 to induce degeneration. Twelve weeks after injury, the nucleus pulposus of a degenerated disc in each animal was injected with ProFreeze and PPS formulated with either a low dose (0.1 million MPCs) or a high dose (0.5 million MPCs) of cells. The 2 adjacent injured discs in each spine were either injected with PPS and ProFreeze (PPS control) or not injected (nil-injected control). The adjacent noninjured L1-2 and L5-6 discs served as noninjured control discs. Disc height indices (DHIs) were obtained at baseline, before injection, and at planned death. After necropsy, 24 weeks after injection, the spines were subjected to MRI and morphological, histological, and biochemical analyses. RESULTS Twelve weeks after the annular injury, all the injured discs exhibited a significant reduction in mean DHI (low-dose group 17.19%; high-dose group 18.01% [p < 0.01]). Twenty-four weeks after injections, the discs injected with the low-dose MPC+PPS formulation recovered disc height, and their mean DHI was significantly greater than the DHI of PPS- and nil-injected discs (p < 0.001). Although the mean Pfirrmann MRI disc degeneration score for the low-dose MPC+PPS-injected discs was lower than that for the nil- and PPS-injected discs, the differences were not significant. The disc morphology scores for the nil- and PPS-injected discs were significantly higher than the normal control disc scores (p < 0.005), whereas the low-dose MPC+PPS-injected disc scores were not significantly different from those of the normal controls. The mean glycosaminoglycan content of the nuclei pulposus of the low-dose MPC+PPS-injected discs was significantly higher than that of the PPS-injected controls (p < 0.05) but was not significantly different from the normal control disc glycosaminoglycan levels. Histopathology degeneration frequency scores for the low-dose MPC+PPS-injected discs were lower than those for the PPS- and Nil-injected discs. The corresponding high-dose MPC+PPS-injected discs failed to show significant improvements in any outcome measure relative to the controls. CONCLUSIONS Intradiscal injections of a formulation composed of 0.1 million MPCs combined with PPS resulted in positive effects in reducing the progression of disc degeneration in an ovine model, as assessed by improvements in DHI and morphological, biochemical, and histopathological scores.
Collapse
Affiliation(s)
- David Oehme
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| | - Peter Ghosh
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;,Proteobioactives, Pty Ltd, Brookvale, New South Wales;,Mesoblast Ltd, Melbourne
| | - Tony Goldschlager
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;,Mesoblast Ltd, Melbourne
| | | | - Susan Shimon
- Proteobioactives, Pty Ltd, Brookvale, New South Wales
| | - Jiehua Wu
- Proteobioactives, Pty Ltd, Brookvale, New South Wales
| | - Courtney McDonald
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| | | | - Jeffrey V Rosenfeld
- Department of Surgery, Monash University, Clayton; and.,Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| |
Collapse
|
33
|
Barron V, Neary M, Mohamed KMS, Ansboro S, Shaw G, O’Malley G, Rooney N, Barry F, Murphy M. Evaluation of the Early In Vivo Response of a Functionally Graded Macroporous Scaffold in an Osteochondral Defect in a Rabbit Model. Ann Biomed Eng 2015; 44:1832-44. [DOI: 10.1007/s10439-015-1473-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
|
34
|
Lee P, Tran K, Chang W, Fang YL, Zhou G, Junka R, Shelke NB, Yu X, Kumbar SG. Bioactive polymeric scaffolds for osteochondral tissue engineering: in vitro
evaluation of the effect of culture media on bone marrow stromal cells. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Paul Lee
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Katelyn Tran
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Wei Chang
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Ya-Lin Fang
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Gan Zhou
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Radoslaw Junka
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Namdev B. Shelke
- Department of Orthopaedic Surgery; UConn Health; Farmington CT 06030 USA
- Institute for Regenerative Engineering; UConn Health; Farmington CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; UConn Health; Farmington CT 06030 USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology, 1 Castle Point on Hudson; Hoboken NJ 07030 USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery; UConn Health; Farmington CT 06030 USA
- Institute for Regenerative Engineering; UConn Health; Farmington CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; UConn Health; Farmington CT 06030 USA
- Department of Biomedical Engineering; University of Connecticut; Storrs CT 06269 USA
| |
Collapse
|
35
|
Cao B, Li Z, Peng R, Ding J. Effects of cell–cell contact and oxygen tension on chondrogenic differentiation of stem cells. Biomaterials 2015; 64:21-32. [DOI: 10.1016/j.biomaterials.2015.06.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/27/2022]
|
36
|
Pustlauk W, Paul B, Brueggemeier S, Gelinsky M, Bernhardt A. Modulation of chondrogenic differentiation of human mesenchymal stem cells in jellyfish collagen scaffolds by cell density and culture medium. J Tissue Eng Regen Med 2015; 11:1710-1722. [PMID: 26178016 DOI: 10.1002/term.2065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/05/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Studies on tissue-engineering approaches for the regeneration of traumatized cartilage focus increasingly on multipotent human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes. The present study applied porous scaffolds made of collagen from the jellyfish Rhopilema esculentum for the in vitro chondrogenic differentiation of hMSCs. Culture conditions in those scaffolds differ from conditions in high-density pellet cultures, making a re-examination of these data necessary. We systematically investigated the influence of seeding density, basic culture media [Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM)] with varying glucose content and supplementation with fetal calf serum (FCS) or bovine serum albumin (BSA) on the chondrogenic differentiation of hMSCs. Gene expression analyses of selected markers for chondrogenic differentiation and hypertrophic development were conducted. Furthermore, the production of cartilage extracellular matrix (ECM) was analysed by quantification of sulphated glycosaminoglycan and collagen type II contents. The strongest upregulation of chondrogenic markers, along with the highest ECM deposition was observed in scaffolds seeded with 2.4 × 106 cells/cm3 after cultivation in high-glucose DMEM and 0.125% BSA. Lower seeding densities compared to high-density pellet cultures were sufficient to induce in vitro chondrogenic differentiation of hMSCs in collagen scaffolds, which reduces the amount of cells required for the seeding of scaffolds and thus the monolayer expansion period. Furthermore, examination of the impact of FCS and α-MEM on chondrogenic MSC differentiation is an important prerequisite for the development of an osteochondral medium for simultaneous osteogenic and chondrogenic differentiation in biphasic scaffolds for osteochondral tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- W Pustlauk
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - B Paul
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - S Brueggemeier
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - M Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - A Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
37
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
38
|
Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. ACTA ACUST UNITED AC 2015; 10:015018. [PMID: 25634427 DOI: 10.1088/1748-6041/10/1/015018] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chondrogenic differentiation of mesenchymal stem cells is strongly influenced by the surrounding chemical and structural milieu. Since the majority of the native cartilage extracellular matrix is composed of nanofibrous collagen fibrils, much of recent cartilage tissue engineering research has focused on developing and utilizing scaffolds with similar nanoscale architecture. However, current literature lacks consensus regarding the ideal fiber diameter, with differences in culture conditions making it difficult to compare between studies. Here, we aimed to develop a more thorough understanding of how cell-cell and cell-biomaterial interactions drive in vitro chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Electrospun poly(ε-caprolactone) microfibers (4.3 ± 0.8 µm diameter, 90 μm(2) pore size) and nanofibers (440 ± 20 nm diameter, 1.2 μm(2) pore size) were seeded with MSCs at initial densities ranging from 1 × 10(5) to 4 × 10(6) cells cm(-3)-scaffold and cultured under transforming growth factor-β (TGF-β) induced chondrogenic conditions for 3 or 6 weeks. Chondrogenic gene expression, cellular proliferation, as well as sulfated glycosaminoglycan and collagen production were enhanced on microfiber in comparison to nanofiber scaffolds, with high initial seeding densities being required for significant chondrogenic differentiation and extracellular matrix deposition. Both cell-cell and cell-material interactions appear to play important roles in chondrogenic differentiation of MSCs in vitro and consideration of several variables simultaneously is essential for understanding cell behavior in order to develop an optimal tissue engineering strategy.
Collapse
Affiliation(s)
- Allison C Bean
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221 Pittsburgh, PA 15219 USA
| | | |
Collapse
|
39
|
Evaluation of Cartilage Repair by Mesenchymal Stem Cells Seeded on a PEOT/PBT Scaffold in an Osteochondral Defect. Ann Biomed Eng 2015; 43:2069-82. [PMID: 25589372 DOI: 10.1007/s10439-015-1246-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
Abstract
The main objective of this study was to evaluate the effectiveness of a mesenchymal stem cell (MSC)-seeded polyethylene-oxide-terephthalate/polybutylene-terephthalate (PEOT/PBT) scaffold for cartilage tissue repair in an osteochondral defect using a rabbit model. Material characterisation using scanning electron microscopy indicated that the scaffold had a 3D architecture characteristic of the additive manufacturing fabrication method, with a strut diameter of 296 ± 52 μm and a pore size of 512 ± 22 μm × 476 ± 25 μm × 180 ± 30 μm. In vitro optimisation revealed that the scaffold did not generate an adverse cell response, optimal cell loading conditions were achieved using 50 μg/ml fibronectin and a cell seeding density of 25 × 10(6) cells/ml and glycosaminoglycan (GAG) accumulation after 28 days culture in the presence of TGFβ3 indicated positive chondrogenesis. Cell-seeded scaffolds were implanted in osteochondral defects for 12 weeks, with cell-free scaffolds and empty defects employed as controls. On examination of toluidine blue staining for chondrogenesis and GAG accumulation, both the empty defect and the cell-seeded scaffold appeared to promote repair. However, the empty defect and the cell-free scaffold stained positive for collagen type I or fibrocartilage, while the cell-seeded scaffold stained positive for collagen type II indicative of hyaline cartilage and was statistically better than the cell-free scaffold in the blinded histological evaluation. In summary, MSCs in combination with a 3D PEOT/PBT scaffold created a reparative environment for cartilage repair.
Collapse
|
40
|
Farrell MJ, Shin JI, Smith LJ, Mauck RL. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthritis Cartilage 2015; 23:134-42. [PMID: 25241241 PMCID: PMC4275365 DOI: 10.1016/j.joca.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissue engineering approaches for cartilage repair have focused on the use of mesenchymal stem cells (MSCs). For clinical success, MSCs must survive and produce extracellular matrix in the physiological context of the synovial joint, where low nutrient conditions engendered by avascularity, nutrient utilization, and waste production prevail. This study sought to delineate the role of microenvironmental stressors on MSC viability and functional capacity in three dimensional (3D) culture. DESIGN We evaluated the impact of glucose and oxygen deprivation on the functional maturation of 3D MSC-laden agarose constructs. Since MSC isolation procedures result in a heterogeneous cell population, we also utilized micro-pellet culture to investigate whether clonal subpopulations respond to these microenvironmental stressors in a distinct fashion. RESULTS MSC health and the functional maturation of 3D constructs were compromised by both glucose and oxygen deprivation. Importantly, glucose deprivation severely limited viability, and so compromised the functional maturation of 3D constructs to the greatest extent. The observation that not all cells died suggested there exists heterogeneity in the response of MSC populations to metabolic stressors. Population heterogeneity was confirmed through a series of studies utilizing clonally derived subpopulations, with a spectrum of matrix production and cell survival observed under conditions of metabolic stress. CONCLUSIONS Our findings show that glucose deprivation has a significant impact on functional maturation, and that some MSC subpopulations are more resilient to metabolic challenge than others. These findings suggest that pre-selection of subpopulations that are resilient to metabolic challenge may improve in vivo outcomes.
Collapse
Affiliation(s)
- M J Farrell
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA
| | - J I Shin
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R L Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Lee CSD, Nicolini AM, Watkins EA, Burnsed OA, Boyan BD, Schwartz Z. Adipose stem cell microbeads as production sources for chondrogenic growth factors. J Stem Cells Regen Med 2014. [PMID: 25705097 PMCID: PMC4329461 DOI: 10.46582/jsrm.1002007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-β3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-β3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation’s beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration.
Collapse
Affiliation(s)
- Christopher S D Lee
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA, USA
| | | | - Elyse A Watkins
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA, USA
| | - Olivia A Burnsed
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA, USA ; Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA ; Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| |
Collapse
|
42
|
Roberts J, Elder RM, Neumann AJ, Jayaraman A, Bryant SJ. Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels. Biomacromolecules 2014; 15:1132-41. [PMID: 24597474 PMCID: PMC3993952 DOI: 10.1021/bm401524h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/04/2014] [Indexed: 02/08/2023]
Abstract
This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide-hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration.
Collapse
Affiliation(s)
- Justine
J. Roberts
- Department of Chemical and Biological
Engineering, BioFrontiers Institute, and Materials Science
and Engineering Program, University of Colorado, Boulder, Colorado 80309
| | - Robert M. Elder
- Department of Chemical and Biological
Engineering, BioFrontiers Institute, and Materials Science
and Engineering Program, University of Colorado, Boulder, Colorado 80309
| | - Alexander J. Neumann
- Department of Chemical and Biological
Engineering, BioFrontiers Institute, and Materials Science
and Engineering Program, University of Colorado, Boulder, Colorado 80309
| | - Arthi Jayaraman
- Department of Chemical and Biological
Engineering, BioFrontiers Institute, and Materials Science
and Engineering Program, University of Colorado, Boulder, Colorado 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological
Engineering, BioFrontiers Institute, and Materials Science
and Engineering Program, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
43
|
Ansboro S, Hayes JS, Barron V, Browne S, Howard L, Greiser U, Lalor P, Shannon F, Barry FP, Pandit A, Murphy JM. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. J Control Release 2014; 179:42-51. [DOI: 10.1016/j.jconrel.2014.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
|
44
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
45
|
Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 2014; 10:214-23. [PMID: 24140603 DOI: 10.1016/j.actbio.2013.10.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/18/2013] [Accepted: 10/09/2013] [Indexed: 12/19/2022]
Abstract
The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in Gel-MA-based hydrogels, and show that with the incorporation of small quantities of photocrosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesized extracellular matrix (ECM) throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 114 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Peter A Levett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia; Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Synoviocyte neotissues towards in vitro meniscal tissue engineering. Res Vet Sci 2013; 95:1201-9. [DOI: 10.1016/j.rvsc.2013.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 01/24/2023]
|
47
|
Chondrogenic differentiation increases antidonor immune response to allogeneic mesenchymal stem cell transplantation. Mol Ther 2013; 22:655-667. [PMID: 24184966 DOI: 10.1038/mt.2013.261] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023] Open
Abstract
Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3(+) and CD68(+) infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use.
Collapse
|
48
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
49
|
Lee CSD, Watkins E, Burnsed OA, Schwartz Z, Boyan BD. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects. Tissue Eng Part A 2013; 19:1451-64. [PMID: 23350662 DOI: 10.1089/ten.tea.2012.0233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent endeavors to use stem cells as trophic factor production sources have the potential to translate into viable therapies for damaged or diseased musculoskeletal tissues. Adipose stem cells (ASCs) can be differentiated into chondrocytes using the chondrogenic medium (CM), but it is unknown if this approach can optimize ASC growth factor secretion for cartilage regeneration by increasing the chondrogenic factor production, while decreasing angiogenic and hypertrophic factor production. The objective of this study was to determine the effects the CM and its components have on growth factor production from ASCs to promote cartilage regeneration. ASCs isolated from male Sprague-Dawley rats and cultured in monolayer or alginate microbeads were treated with either the growth medium (GM) or the CM for 5 days. In subsequent studies, ASC monolayers were treated with either the GM supplemented with different combinations of 50 μg/mL ascorbic acid-2-phosphate (AA2P), 100 nM dexamethasone (Dex), 10 ng/mL transforming growth factor (TGF)-β1, and 100 ng/mL bone morphogenetic protein (BMP)-6 or with the CM excluding different combinations of AA2P, Dex, TGF-β1, and BMP-6. mRNA levels and growth factor production were quantified at 8 and 24 h after the last media change, respectively. The CM increased chondrogenic factor secretion (TGF-β2, TGF-β3, and insulin-like growth factor [IGF]-I) and decreased angiogenic factor production (the vascular endothelial growth factor [VEGF]-A, the fibroblast growth factor [FGF]-2). Microencapsulation in the GM increased production of the chondrogenic (IGF-I, TGF-β2) and angiogenic (VEGF-A) factors. AA2P increased secretion of chondrogenic factors (IGF-I, TGF-β2), and decreased angiogenic factor (VEGF-A) secretion, in addition to decreasing mRNA levels for factors associated with chondrocyte hypertrophy (FGF-18). Dex increased mRNA levels for hypertrophic factors (BMP-2, FGF-18) and decreased angiogenic factor secretion (VEGF-A). TGF-β1 increased angiogenic factor production (FGF-2, VEGF-A) and decreased chondrogenic factor mRNA levels (IGF-I, PTHrP). BMP-6 increased hypertrophic mRNA levels (FGF-18) and chondrogenic factor production (TGF-β2). When ASC microbeads preconditioned with the CM were implanted in a focal cartilage defect and immobilized within an RGD-conjugated hydrogel, tissue infiltration from the edges of the defect and perichondrium was observed. These results show that differentiation media components have distinct effects on ASC's production of angiogenic, chondrogenic, and hypertrophic factors and that AA2P may be the most beneficial CM component for preconditioning ASCs to stimulate cartilage regeneration.
Collapse
Affiliation(s)
- Christopher S D Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
50
|
Coburn JM, Bernstein N, Bhattacharya R, Aich U, Yarema KJ, Elisseeff JH. Differential response of chondrocytes and chondrogenic-induced mesenchymal stem cells to C1-OH tributanoylated N-acetylhexosamines. PLoS One 2013; 8:e58899. [PMID: 23516573 PMCID: PMC3597543 DOI: 10.1371/journal.pone.0058899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 02/08/2013] [Indexed: 12/02/2022] Open
Abstract
Articular cartilage has a limited ability to self-repair because of its avascular nature and the low mitotic activity of the residing chondrocytes. There remains a significant need to develop therapeutic strategies to increase the regenerative capacity of cells that could repair cartilage. Multiple cell types, including chondrocytes and mesenchymal stem cells, have roles in articular cartilage regeneration. In this study, we evaluated a platform technology of multiple functionalized hexosamines, namely 3,4,6-O-tributanoylated-N-acetylgalactosamine (3,4,6-O-Bu3GalNAc), 3,4,6-O-tributanoylated-N-acetylmannosamine (3,4,6-O-Bu3ManNAc) and 3,4,6-O-Bu3GlcNAc, with the potential ability to reduce NFκB activity. Exposure of IL-1β-stimulated chondrocytes to the hexosamine analogs resulted in increased expression of ECM molecules and a corresponding improvement in cartilage-specific ECM accumulation. The greatest ECM accumulation was observed with 3,4,6-O-Bu3GalNAc. In contrast, mesenchymal stem cells (MSCs) exposed to 3,4,6-O-Bu3GalNAc exhibited a dose dependent decrease in chondrogenic differentation as indicated by decreased ECM accumulation. These studies established the disease modification potential of a hexosamine analog platform on IL-1β-stimulated chondrocytes. We determined that the modified hexosamine with the greatest potential for disease modification is 3,4,6-O-Bu3GalNAc. This effect was distinctly different with 3,4,6-O-Bu3GalNAc exposure to chondrogenic-induced MSCs, where a decrease in ECM accumulation and differentiation was observed. Furthermore, these studies suggest that NFκB pathway plays a complex role cartilage repair.
Collapse
Affiliation(s)
- Jeannine M. Coburn
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nicholas Bernstein
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rahul Bhattacharya
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Udayanath Aich
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (JHE); (KJY)
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (JHE); (KJY)
| |
Collapse
|