1
|
Establishment of a testis cell line from Clarias magur: a potential resource for in-vitro applications. THE NUCLEUS 2021. [DOI: 10.1007/s13237-020-00345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
2
|
Kim JW, Oh BG, Kim J, Kim DG, Nam BH, Kim YO, Park JY, Cheong J, Kong HJ. Development and Characterization of a New Cell Line from Olive Flounder Paralichthys olivaceus. Dev Reprod 2018; 22:225-234. [PMID: 30324159 PMCID: PMC6182235 DOI: 10.12717/dr.2018.22.3.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022]
Abstract
A new embryonic cell line (OFEC-17FEN) derived from olive flounder Paralichthys olivaceus was developed. OFEC-17FEN cells were subcultured for <30 passages over ~200 days. OFEC-17FEN cells had a doubling time of 114.34 h and modal diploid chromosome number was 48. The pluripotency genes POU5f1 and NANOG were expressed in OFEC-17FEN cells. However, the lack of several pluripotency-related genes expression indicates that OFEC-17FEN cells are not stem cells. OFEC-17FEN cells transfected with plasmid pEGFP-c1 exhibited a strong green fluorescent signal at 48 h after transfection. Accordingly, OFEC-17FEN cells may be useful for both basic research and biotechnological application.
Collapse
Affiliation(s)
- Ju-Won Kim
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Bang Geun Oh
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Julan Kim
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - Jung Youn Park
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| | - JaeHun Cheong
- Dept. of Integrated Biological Science, Pusan
National University, Busan 43241,
Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National
Institute of Fisheries Science, Busan 46083,
Korea
| |
Collapse
|
3
|
Xu X, Sivaramasamy E, Jin S, Li F, Xiang J. Establishment and characterization of a skin epidermal cell line from mud loach, Misgurnus anguillicaudatus, (MASE) and its interaction with three bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2016; 55:444-451. [PMID: 27288257 DOI: 10.1016/j.fsi.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
A continuous skin epidermal cell line from mud Loach (Misgurnus anguillicaudatus) (MASE cell line) was established with its application in bacteria infection demonstrated in this study. Primary MASE cell culture was initiated at 26 °C in Dulbecco's modified Eagle medium/F12 medium (1:1; pH7.2) supplemented with 20% fetal bovine serum (FBS). The primary MASE cells in spindle morphology proliferated into a confluent monolayer within 2 weeks, and were continuously subcultured even in 10% FBS- DMEM/F12 after 10 passages. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 26 °C. The MASE cells have been subcultured steadily over Passage 90 with a population doubling time of 53.3 h at Passage 60. Chromosome analysis revealed that 60.5% of MASE cells at Passage 60 maintained the normal diploid chromosome number (50) with a normal karyotype of 10m+4sm + 36t. Bacteria from the three species (Aeromonas veronii, Vibrio parahaemolyticus and Escherichia coli) were used to investigate the interactions between bacteria and cellular hosts. The three strains could be attached to the MASE cells and replicate at different levels. A. veronii could induce apoptosis in the MASE cells, with highest adherence rate among the three strains, whereas V. parahaemolyticus could cause highest cell death rate through a non-apoptotic cell death pathway, with high level of replication. The results revealed that different bacteria could interact with the MASE cells in different manners, and divergent pathways might lie in mediating cell death when cellular hosts confronted with pathogen infection. Therefore, the MASE cell line may serve as a useful tool for studying the interaction between skin bacteria and fish cells.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Elayaraja Sivaramasamy
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Songjun Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China.
| |
Collapse
|
4
|
Sood N, Chaudhary DK, Pradhan PK, Verma DK, Raja Swaminathan T, Kushwaha B, Punia P, Jena JK. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim 2015; 51:787-96. [DOI: 10.1007/s11626-015-9891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
|
5
|
Higaki S, Shimada M, Koyama Y, Fujioka Y, Sakai N, Takada T. Development and characterization of an embryonic cell line from endangered endemic cyprinid Honmoroko Gnathopogon caerulescens (Sauvage, 1883). In Vitro Cell Dev Biol Anim 2015; 51:763-8. [PMID: 25832766 DOI: 10.1007/s11626-015-9894-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Establishing a cell line from endemic species facilitates the cell biological research of these species in the laboratory. In this study, an epithelium-like cell line RME1 was established from the blastula-stage embryos of the critically endangered cyprinid Honmoroko Gnathopogon caerulescens, which is endemic to ancient Lake Biwa in Japan. To the best of our knowledge, this is the first embryonic cell line from an endangered fish species. This cell line is well adapted to grow at 28°C in the culture medium, which was successfully used for establishing testicular and ovarian cell lines of G. caerulescens, and has displayed stable growth over 60 passages since its initiation in June 2011. Although RME1 did not express the genes detected in blastula-stage embryos, such as oct4, sox2, nanog, and klf4, it showed a high euploidy rate (2n = 50; 67.2%) with normal diploid karyotype morphology, suggesting that RME1 retains the genomic organization of G. caerulescens and can prove to be a useful tool to investigate the unique properties of endangered endemic fishes at cellular level.
Collapse
Affiliation(s)
- Shogo Higaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Manami Shimada
- Laboratory of Cell Engineering, Graduate School of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshie Koyama
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Yasuhiro Fujioka
- Lake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga, 525-0001, Japan.
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
| | - Tatsuyuki Takada
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan. .,Laboratory of Cell Engineering, Graduate School of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan. .,Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
6
|
Beck BH, Fuller SA. The impact of mitochondrial and thermal stress on the bioenergetics and reserve respiratory capacity of fish cell lines. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:244-250. [PMID: 23113865 DOI: 10.1080/08997659.2012.720637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ictalurus puntatus (CCO), white bass Morone chrysops (WBE), and fathead minnow Pimephales promelas (EPC) to both mitochondrial and thermal stressors. Using extracellular flux (EF) technology, we simultaneously measured the oxygen consumption rate (OCR; a measure of mitochondrial function) and extracellular acidification rate (ECAR; a surrogate of glycolysis) in each cell type. We performed a mitochondrial function protocol whereby compounds modulating different components of mitochondrial respiration were sequentially exposed to cells. This provided us with basal and maximal OCR, OCR linked to ATP production, OCR from ion movement across the mitochondrial inner membrane, the reserve capacity, and OCR independent of the electron transport chain. After heat shock, EPC and CCO significantly decreased OCR and all three cell lines modestly increased ECAR. After heat shock, the reserve capacity, the mitochondrial energetic reserve used to cope with stress and increased bioenergetic demand, was unaffected in EPC and CCO and completely abrogated in WBE. These findings provide proof-of-concept experimental data that further highlight the utility of fish cell lines as tools for modeling bioenergetics.
Collapse
Affiliation(s)
- Benjamin H Beck
- U.S. Department of Agriculture, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA.
| | | |
Collapse
|
7
|
Lakra WS, Swaminathan TR, Joy KP. Development, characterization, conservation and storage of fish cell lines: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:1-20. [PMID: 20607393 DOI: 10.1007/s10695-010-9411-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/12/2010] [Indexed: 05/23/2023]
Abstract
Cell lines provide an important biological tool for carrying out investigations into physiology, virology, toxicology, carcinogenesis and transgenics. Teleost fish cell lines have been developed from a broad range of tissues such as ovary, fin, swim bladder, heart, spleen, liver, eye muscle, vertebrae, brain, skin. One hundred and twenty-four new fish cell lines from different fish species ranging from grouper to eel have been reported since the last review by Fryer and Lannan (J Tissue Culture Methods 16: 87-94, 1994). Among the cell lines listed, more than 60% were established from species from Asia, which contributes more than 80% of total fish production. This includes 59 cell lines from 19 freshwater, 54 from 22 marine and 11 from 3 brackish water fishes. Presently, about 283 cell lines have been established from finfish around the world. In addition to the listing and a scientific update on new cell lines, the importance of authentication, applications, cross-contamination and implications of overpassaged cell lines has also been discussed in this comprehensive review. The authors feel that the review will serve an updated database for beginners and established researchers in the field of fish cell line research and development.
Collapse
Affiliation(s)
- W S Lakra
- National Bureau of Fish Genetic Resources, Canal Ring Road, Lucknow, UP, India.
| | | | | |
Collapse
|
8
|
Milani CJE, Aziz RK, Locke JB, Dahesh S, Nizet V, Buchanan JT. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. MICROBIOLOGY-SGM 2009; 156:543-554. [PMID: 19762441 DOI: 10.1099/mic.0.028365-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Deltapdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Deltapdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen.
Collapse
Affiliation(s)
- Carlo J E Milani
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Jeffrey B Locke
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0657, La Jolla, CA 92093-0657, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - John T Buchanan
- Aqua Bounty Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA 92121, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| |
Collapse
|
9
|
Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass. Vet Microbiol 2008; 131:145-53. [DOI: 10.1016/j.vetmic.2008.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 11/18/2022]
|
10
|
Locke JB, Aziz RK, Vicknair MR, Nizet V, Buchanan JT. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS One 2008; 3:e2824. [PMID: 18665241 PMCID: PMC2483786 DOI: 10.1371/journal.pone.0002824] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 06/17/2008] [Indexed: 12/21/2022] Open
Abstract
Background Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI). Methodology/Principal Findings S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the ΔsimA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. Conclusions/Significance Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement. The M-like protein mutant created in this research holds promise as live-attenuated vaccine.
Collapse
Affiliation(s)
- Jeffrey B. Locke
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mike R. Vicknair
- Kent SeaTech Corporation, San Diego, California, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John T. Buchanan
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Aqua Bounty Technologies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Barnes DW, Parton A, Tomana M, Hwang JH, Czechanski A, Fan L, Collodi P. Stem cells from cartilaginous and bony fish. Methods Cell Biol 2008; 86:343-67. [PMID: 18442656 DOI: 10.1016/s0091-679x(08)00016-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David W Barnes
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Locke JB, Colvin KM, Datta AK, Patel SK, Naidu NN, Neely MN, Nizet V, Buchanan JT. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J Bacteriol 2006; 189:1279-87. [PMID: 17098893 PMCID: PMC1797360 DOI: 10.1128/jb.01175-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface capsular polysaccharides play a critical role in protecting several pathogenic microbes against innate host defenses during infection. Little is known about virulence mechanisms of the fish pathogen Streptococcus iniae, though indirect evidence suggests that capsule could represent an important factor. The putative S. iniae capsule operon contains a homologue of the cpsD gene, which is required for capsule polymerization and export in group B Streptococcus and Streptococcus pneumoniae. To elucidate the role of capsule in the S. iniae infectious process, we deleted cpsD from the genomes of two virulent S. iniae strains by allelic exchange mutagenesis to generate the isogenic capsule-deficient DeltacpsD strains. Compared to wild-type S. iniae, the DeltacpsD mutants had a predicted reduction in buoyancy and cell surface negative charge. Transmission electron microscopy confirmed a decrease in the abundance of extracellular capsular polysaccharide. Gas-liquid chromatography-mass spectrometry analysis of the S. iniae extracellular polysaccharides showed the presence of l-fucose, d-mannose, d-galactose, d-glucose, d-glucuronic acid, N-acetyl-d-galactosamine, and N-acetyl-d-glucosamine, and all except mannose were reduced in concentration in the isogenic mutant. The DeltacpsD mutants were highly attenuated in vivo in a hybrid striped bass infection challenge despite being more adherent and invasive to fish epithelial cells and more resistant to cationic antimicrobial peptides than wild-type S. iniae. Increased susceptibility of the S. iniae DeltacpsD mutants to phagocytic killing in whole fish blood and by a fish macrophage cell line confirmed the role of capsule in virulence and highlighted its antiphagocytic function. In summary, we report a genetically defined study on the role of capsule in S. iniae virulence and provide preliminary analysis of S. iniae capsular polysaccharide sugar components.
Collapse
Affiliation(s)
- Jeffrey B Locke
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|