1
|
Dutta AK, Gazi MS, Uddin SJ. A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis. Heliyon 2023; 9:e14386. [PMID: 36925514 PMCID: PMC10011005 DOI: 10.1016/j.heliyon.2023.e14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background Avian influenza or more commonly known as bird flu is a widespread infectious disease in poultry. This review aims to accumulate information of different natural plant sources that can aid in combating this disease. Influenza virus (IV) is known for its ability to mutate and infect different species (including humans) and cause fatal consequences. Methods Total 33 plants and 4 natural compounds were identified and documented. Molecular docking was performed against the target viral protein neuraminidase (NA), with some plant based natural compounds and compared their results with standard drugs Oseltamivir and Zanamivir to obtain novel drug targets for influenza in chickens. Results It was seen that most extracts exhibit their action by interacting with viral hemagglutinin or neuraminidase and inhibit viral entry or release from the host cell. Some plants also interacted with the viral RNA replication or by reducing proinflammatory cytokines. Ethanol was mostly used for extraction. Among all the plants Theobroma cacao, Capparis Sinaica Veil, Androgarphis paniculate, Thallasodendron cillatum, Sinularia candidula, Larcifomes officinalis, Lenzites betulina, Datronia molis, Trametes gibbose exhibited their activity with least concentration (below 10 μg/ml). The dockings results showed that some natural compounds (5,7- dimethoxyflavone, Aloe emodin, Anthocyanins, Quercetin, Hemanthamine, Lyocrine, Terpenoid EA showed satisfactory binding affinity and binding specificity with viral neuraminidase compared to the synthetic drugs. Conclusion This review clusters up to date information of effective herbal plants to bolster future influenza treatment research in chickens. The in-silico analysis also suggests some potential targets for future drug development but these require more clinical analysis.
Collapse
Affiliation(s)
- Ashit Kumar Dutta
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Matsunaga N, Ijiri M, Ishikawa K, Ozawa M, Okuya K, Khalil AM, Kojima I, Esaki M, Masatani T, Matsui T, Fujimoto Y. Avian paramyxovirus serotype-1 isolation from migratory birds and environmental water in southern Japan: An epidemiological survey during the 2018/19-2021/2022 winter seasons. Microbiol Immunol 2023; 67:185-193. [PMID: 36628409 DOI: 10.1111/1348-0421.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Newcastle disease caused by highly pathogenic viruses of avian paramyxovirus serotype-1 (APMV-1) is a highly contagious poultry disease. Although a large-scale epidemic of Newcastle disease had occurred in Japan between the 1950s and the 2000s, there have been no outbreaks anywhere since 2010. In addition, there are no reports of epidemiological surveys of APMV-1 in wild birds in Japan in the last 10 years. We conducted the first epidemiological survey of APMV-1 in the Izumi plain, Kagoshima prefecture of southern Japan from the winter of 2018 to 2022. A total of 15 APMV-1 strains were isolated, and isolation rates from roosting water and duck fecal samples were 2.51% and 0.10%, respectively. These results indicate that the isolation method from environmental water may be useful for efficient surveillance of APMV-1 in wild birds. Furthermore, this is the first report on the success of APMV-1 isolation from environmental water samples. Genetic analysis of the Fusion (F) gene showed that all APMV-1 isolates were closely related to virus strains circulating among waterfowl in Far East Asian countries. All isolates have avirulent motifs in their cleavage site of F genes, all of which were presumed to be low pathogenic viruses in poultry. However, pathogenicity test using embryonated chicken eggs demonstrated that some isolates killed all chicken embryos regardless of viral doses inoculated (102 -106 50% egg infectious dose). These results indicated that APMV-1 strains, which are potentially pathogenic to chickens, are continuously brought into the Izumi plain by migrating wild birds.
Collapse
Affiliation(s)
- Nonoka Matsunaga
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Moe Ijiri
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kemi Ishikawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| | - Kosuke Okuya
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Ahmed Magdy Khalil
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mana Esaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tsutomu Matsui
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| | - Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
A SYSTEMATIC REVIEW AND NARRATIVE SYNTHESIS OF THE USE OF ENVIRONMENTAL SAMPLES FOR THE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES IN WILD WATERBIRDS. J Wildl Dis 2021; 57:1-18. [PMID: 33635994 DOI: 10.7589/jwd-d-20-00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
Abstract
Wild waterbirds are reservoir hosts for avian influenza viruses (AIV), which can cause devastating outbreaks in multiple species, making them a focus for surveillance efforts. Traditional AIV surveillance involves direct sampling of live or dead birds, but environmental substrates present an alternative sample for surveillance. Environmental sampling analyzes AIV excreted by waterbirds into the environment and complements direct bird sampling by minimizing financial, logistic, permitting, and spatial-temporal constraints associated with traditional surveillance. Our objectives were to synthesize the literature on environmental AIV surveillance, to compare and contrast the different sample types, and to identify key themes and recommendations to aid in the implementation of AIV surveillance using environmental samples. The four main environmental substrates for AIV surveillance are feces, feathers, water, and sediment or soil. Feces were the most common environmental substrate collected. The laboratory analysis of water and sediment provided challenges, such as low AIV concentration, heterogenous AIV distribution, or presence of PCR inhibitors. There are a number of abiotic and biotic environmental factors, including temperature, pH, salinity, or presence of filter feeders, that can influence the presence and persistence of AIV in environmental substrates; however, the nature of this influence is poorly understood in field settings, and field data from southern, coastal, and tropical ecosystems are underrepresented. Similarly, there are few studies comparing the performance of environmental samples to each other and to samples collected in wild waterbirds, and environmental surveillance workflows have yet to be validated or optimized. Environmental samples, particularly when used in combination with new technology such as environmental DNA and next generation sequencing, provided information on trends in AIV detection rates and circulating subtypes that complemented traditional, direct waterbird sampling. The use of environmental samples for AIV surveillance also shows significant promise for programs whose goal is early warning of high-risk subtypes.
Collapse
|
4
|
Verhagen JH, Eriksson P, Leijten L, Blixt O, Olsen B, Waldenström J, Ellström P, Kuiken T. Host Range of Influenza A Virus H1 to H16 in Eurasian Ducks Based on Tissue and Receptor Binding Studies. J Virol 2021; 95:e01873-20. [PMID: 33361418 PMCID: PMC8094940 DOI: 10.1128/jvi.01873-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Dabbling and diving ducks partly occupy shared habitats but have been reported to play different roles in wildlife infectious disease dynamics. Influenza A virus (IAV) epidemiology in wild birds has been based primarily on surveillance programs focused on dabbling duck species, particularly mallard (Anas platyrhynchos). Surveillance in Eurasia has shown that in mallards, some subtypes are commonly (H1 to H7 and H10), intermediately (H8, H9, H11, and H12), or rarely (H13 to H16) detected, contributing to discussions on virus host range and reservoir competence. An alternative to surveillance in determining IAV host range is to study virus attachment as a determinant for infection. Here, we investigated the attachment patterns of all avian IAV subtypes (H1 to H16) to the respiratory and intestinal tracts of four dabbling duck species (Mareca and Anas spp.), two diving duck species (Aythya spp.), and chicken, as well as to a panel of 65 synthetic glycan structures. We found that IAV subtypes generally showed abundant attachment to colon of the Anas duck species, mallard, and Eurasian teal (Anas crecca), supporting the fecal-oral transmission route in these species. The reported glycan attachment profile did not explain the virus attachment patterns to tissues but showed significant attachment of duck-originated viruses to fucosylated glycan structures and H7 virus tropism for Neu5Gc-LN. Our results suggest that Anas ducks play an important role in the ecology and epidemiology of IAV. Further knowledge on virus tissue attachment, receptor distribution, and receptor binding specificity is necessary to understand the mechanisms underlying host range and epidemiology of IAV.IMPORTANCE Influenza A viruses (IAVs) circulate in wild birds worldwide. From wild birds, the viruses can cause outbreaks in poultry and sporadically and indirectly infect humans. A high IAV diversity has been found in mallards (Anas platyrhynchos), which are most often sampled as part of surveillance programs; meanwhile, little is known about the role of other duck species in IAV ecology and epidemiology. In this study, we investigated the attachment of all avian IAV hemagglutinin (HA) subtypes (H1 to H16) to tissues of six different duck species and chicken as an indicator of virus host range. We demonstrated that the observed virus attachment patterns partially explained reported field prevalence. This study demonstrates that dabbling ducks of the Anas genus are potential hosts for most IAV subtypes, including those infecting poultry. This knowledge is useful to target the sampling of wild birds in nature and to further study the interaction between IAVs and birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
6
|
The Low-pH Resistance of Neuraminidase Is Essential for the Replication of Influenza A Virus in Duck Intestine following Infection via the Oral Route. J Virol 2016; 90:4127-4132. [PMID: 26865722 DOI: 10.1128/jvi.03107-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A viruses are known to primarily replicate in duck intestine following infection via the oral route, but the specific role of neuraminidase (NA) for the intestinal tropism of influenza A viruses has been unclear. A reassortant virus (Dk78/Eng62N2) did not propagate in ducks infected via the oral route. To generate variant viruses that grow well in ducks via the oral route, we isolated viruses that effectively replicate in intestinal mucosal cells by passaging Dk78/Eng62N2 in duck via rectal-route infection. This procedure led to the isolation of a variant virus from the duck intestine. This virus was propagated using embryonated chicken eggs and inoculated into a duck via the oral route, which led to the isolation of Dk-rec6 from the duck intestine. Experimental infections with mutant viruses generated by using reverse genetics indicated that the paired mutation of residues 356 and 431 in NA was necessary for the viral replication in duck intestine. The NA assay revealed that the activity of Dk78/Eng62N2 almost disappeared after pH 3 treatment, whereas that of Dk-rec6 was maintained. Furthermore, to identify the amino acid residues associated with the low-pH resistance, we measured the activities of mutant NA proteins transiently expressed in 293 cells after pH 3 treatment. All mutant NA proteins that possessed proline at position 431 showed higher activities than NA proteins that possessed glutamine at this position. These findings indicate that the low-pH resistance of NA plays an important role in the ability of influenza A virus to replicate in duck intestine. IMPORTANCE Neuraminidase (NA) activity facilitates the release of viruses from cells and, as such, is important for the replicative efficiency of influenza A virus. Ducks are believed to serve as the principal natural reservoir for influenza A virus; however, the key properties of NA for viral infection in duck are not well understood. In this study, we identify amino acid residues in NA that contribute to viral replication in ducks via the natural route of infection and demonstrate that maintenance of NA activity under low-pH conditions is associated with the biological properties of the virus. These findings provide insights into the mechanisms of replication of influenza A virus in ducks.
Collapse
|
7
|
Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens. Arch Virol 2015; 160:2063-70. [PMID: 26081872 DOI: 10.1007/s00705-015-2470-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The pathogenicity of highly pathogenic avian influenza (HPAI) viruses is dependent on multiple factors, but the sequence at the HA cleavage site plays the most important role. To better understand the mechanism of virulence of HPAI virus, an avirulent H5 avian influenza virus, A/teal/Tottori/150/02 (H5N3, teal/150), was passaged in respiratory organs of chickens to generate a virus with a highly pathogenic phenotype. After 12 consecutive passages, the virus (strain 12a) became highly pathogenic, with a 100 % mortality rate in chickens. Sequence analysis of the highly pathogenic variant revealed an amino acid change from aspartic acid (Asp) to asparagine (Asn) at position 44 of matrix protein 2 (M2). To investigate the role of M2 in the pathogenicity of HPAI virus, we generated reassortant viruses possessing a polybasic HA cleavage site and either Asp or Asn at position 44 of M2 using the highly pathogenic strain 12a and the avirulent strain 7a, which has Asp at position 44 of M2 derived from isolate teal/150, and we compared their pathogenicity in chickens. Experimental infections demonstrated that the pathogenicity of viruses possessing Asp in M2 was dramatically decreased, and the mortality rate of inoculated chickens was 0 %, in contrast to viruses with Asn, which showed 70 to 100 % mortality. Our findings indicate that M2 protein of the avirulent H5 avian influenza virus is important for acquiring high virulence and that Asn at position 44 of M2, in addition to the polybasic HA cleavage site, is crucial for high pathogenicity in chickens.
Collapse
|
8
|
Yamamoto E, Ito H, Tomioka Y, Ito T. Characterization of novel avian paramyxovirus strain APMV/Shimane67 isolated from migratory wild geese in Japan. J Vet Med Sci 2015; 77:1079-85. [PMID: 25866408 PMCID: PMC4591148 DOI: 10.1292/jvms.14-0529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An avian paramyxovirus (APMV) isolated from goose feces (APMV/Shimane67) was
biologically, serologically and genetically characterized. APMV/Shimane67 showed typical
paramyxovirus morphology on electron microscopy. On hemagglutination inhibition test,
antiserum against APMV/Shimane67 revealed low reactivity with other APMV serotypes and
vice versa. The fusion (F) protein gene of APMV/Shimane67 contained
1,638 nucleotides in a single open reading frame encoding a protein of 545 amino acids.
The cleavage site of F protein contained a pair of single basic amino
acid (VRENR/L). The nucleotide and deduced amino acid sequences of the F gene
of APMV/Shimane67 had relatively low identities (42.9–62.7% and 28.9–67.3%, respectively)
with those of other APMVs. Phylogenetic analysis showed that APMV/Shimane67 was related to
NDV, APMV-9 and APMV-12, but was distinct from those APMV serotypes. These results suggest
that APMV/Shimane67 is a new APMV serotype, APMV-13.
Collapse
Affiliation(s)
- Eiji Yamamoto
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | |
Collapse
|
9
|
Bui VN, Ogawa H, Hussein ITM, Hill NJ, Trinh DQ, AboElkhair M, Sultan S, Ma E, Saito K, Watanabe Y, Runstadler JA, Imai K. Genetic characterization of a rare H12N3 avian influenza virus isolated from a green-winged teal in Japan. Virus Genes 2015; 50:316-20. [PMID: 25557930 DOI: 10.1007/s11262-014-1162-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
This study reports on the genetic characterization of an avian influenza virus, subtype H12N3, isolated from an Eurasian green-winged teal (Anas crecca) in Japan in 2009. The entire genome sequence of the isolate was analyzed, and phylogenetic analyses were conducted to characterize the evolutionary history of the isolate. Phylogenetic analysis of the hemagglutinin and neuraminidase genes indicated that the virus belonged to the Eurasian-like avian lineage. Molecular dating indicated that this H12 virus is likely a multiple reassortant influenza A virus. This is the first reported characterization of influenza A virus subtype H12N3 isolated in Japan and these data contribute to the accumulation of knowledge on the genetic diversity and generation of novel influenza A viruses.
Collapse
Affiliation(s)
- Vuong Nghia Bui
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dunowska M, Zheng T, Perrott MR, Christensen N. A survey of avian paramyxovirus type 1 infections among backyard poultry in New Zealand. N Z Vet J 2013; 61:316-22. [PMID: 23611028 DOI: 10.1080/00480169.2013.785915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS To determine the presence and the pathotype of avian paramyxovirus type 1 (APMV-1), as well as the prevalence of APMV-1 antibodies, among backyard flocks of poultry in selected New Zealand locations. METHODS Archival pooled (n = 162) tracheal and cloacal swabs collected from backyard poultry were tested for the presence of APMV-1 RNA by real-time and conventional reverse transcription (RT)-PCR assays. Archival blood samples (n = 240) from a subpopulation of the same birds were tested for the presence of the APMV-1 antibody using a commercial ELISA assay. The archival samples were collected from geographical areas close to bodies of water, in the Bay of Plenty or Wairarapa regions of the North Island of New Zealand, with the high likelihood of interactions between wild waterfowl and domestic poultry. RESULTS Avian paramyxovirus type 1 RNA was not detected in any of the swabs tested. Antibodies to APMV-1 were detected on 18/19 farms, in 71/240 (29.5%) blood samples tested. The percentage of seropositive birds varied between seropositive farms and ranged from 8.3 to 100%. The percentage of seropositive birds on each farm was not statistically correlated with the flock size, the number of birds sampled, the number of farmed waterfowl, or with the distance to the closest lake/river. However, all chickens from the farm with the highest number of farmed ducks were seropositive for APMV-1. CONCLUSIONS Lack of detection of APMV-1 in any of the samples indicates that APMV-1 was not circulating among the poultry at the time of sampling. However, detection of APMV-1 antibodies in a proportion of birds on each farm indicates that infection with APMV-1, or antigenically related APMV, is common among backyard poultry. CLINICAL RELEVANCE On-going proactive surveillance and characterisation of circulating APMV-1 is important for monitoring changes in circulating genotypes of APMV-1 and for understanding the regional ecology of these viruses for the purpose of planning appropriate disease control and prevention strategies. Our data suggest that backyard flocks should be considered as potential reservoirs of APMV. Chickens from backyard farms with multiple bird species may provide good targets for surveillance purposes.
Collapse
Affiliation(s)
- M Dunowska
- a Institute of Veterinary Animal and Biomedical Sciences, Massey University , Private Bag 11 222, Palmerston North 4474 , New Zealand
| | | | | | | |
Collapse
|
11
|
Surveillance and characterization of avian influenza viruses from migratory water birds in eastern Hokkaido, the northern part of Japan, 2009–2010. Virus Genes 2012; 46:323-9. [DOI: 10.1007/s11262-012-0868-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
12
|
Bui VN, OGAWA H, KARIBE K, MATSUO K, NGUYEN TH, AWAD SSA, Minoungou GL, Xininigen, SAITO K, WATANABE Y, Runstadler JA, HAPP GM, IMAI K. Surveillance of Avian Influenza Virus in Migratory Water Birds in Eastern Hokkaido, Japan. J Vet Med Sci 2011; 73:209-15. [DOI: 10.1292/jvms.10-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Vuong N. Bui
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
- National Institute of Veterinary Research
| | - Haruko OGAWA
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | - Kazuji KARIBE
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | - Kengo MATSUO
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | - Tung H. NGUYEN
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | - Sanaa S. A. AWAD
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
- Faculty of Veterinary Medicine, Mansoura University
| | - Germaine L. Minoungou
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | - Xininigen
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | | | | | | | - George M. HAPP
- Institute of Arctic Biology, University of Alaska Fairbanks
| | - Kunitoshi IMAI
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|