1
|
MAYLINA L, KAMBAYASHI S, BABA K, IGASE M, MIZUNO T, OKUDA M. Decreased sensitivity of cyclin-dependent kinase 4/6 inhibitors, palbociclib and abemaciclib to canine lymphoma cells with high p16 protein expression and low retinoblastoma protein phosphorylation. J Vet Med Sci 2023; 85:99-104. [PMID: 36450591 PMCID: PMC9887221 DOI: 10.1292/jvms.22-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Canine lymphoma/leukemia cell lines with p16 protein expressions: high (17-71 and GL-1) and low (CLBL-1, CLC, Nody-1, and UL-1) were treated in vitro with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, palbociclib or abemaciclib. Cell proliferation decreased as a result, with higher IC50 levels observed in the high p16 (17-71 and GL-1) and one low p16 (UL-1) cell lines compared with the low p16 cells (CLBL-1, CLC, and Nody-1). As expected, palbociclib and abemaciclib treatment reduced pRb phosphorylation in a dose-dependent manner, especially in cells with low p16. These results suggest that CDK4/6 inhibitors have potential as new chemotherapeutic agents for canine lymphoma and high p16 protein expression may be used as a biomarker for resistance to CDK4/6 inhibitor therapy.
Collapse
Affiliation(s)
- Leni MAYLINA
- Laboratory of Veterinary Internal Medicine, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Division of Veterinary Internal Medicine, Department of Clinic, Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB
University, Bogor, Indonesia
| | - Satoshi KAMBAYASHI
- Laboratory of Veterinary Internal Medicine, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji BABA
- Laboratory of Veterinary Internal Medicine, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaya IGASE
- Laboratory of Molecular Diagnosis and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Laboratory of Molecular Diagnosis and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya MIZUNO
- Laboratory of Molecular Diagnosis and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Laboratory of Molecular Diagnosis and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaru OKUDA
- Laboratory of Veterinary Internal Medicine, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan,Correspondence to: Okuda M: , Laboratory of Veterinary Internal Medicine,
Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| |
Collapse
|
2
|
Simultaneous Analysis of the p16 Gene and Protein in Canine Lymphoma Cells and Their Correlation with pRb Phosphorylation. Vet Sci 2022; 9:vetsci9080393. [PMID: 36006308 PMCID: PMC9416461 DOI: 10.3390/vetsci9080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lymphoma is one of the most frequently diagnosed malignancies in dogs. The most common epigenetic alteration is gene methylation. Methylation of the p16 gene leads to decreased expression of its protein. The p16 protein inhibits the activity of cyclin-dependent kinase, as a negative control of the cell cycle to prevent phosphorylation of the retinoblastoma (pRb) protein. The methylation of the p16 gene has been reported in canine lymphomas, however, p16 protein expression has not been examined in previous studies. In this study, the gene and protein expression of p16, and phosphorylation of pRb, were examined simultaneously in canine lymphoma/leukemia cell lines treated with or without a demethylation drug in vitro. We identified the hypermethylation of the p16 gene, the decreased expression of p16 protein and the hyperphosphorylation of pRb in four out of eight cell lines. Furthermore, we revealed that the expression of the p16 protein was more stable than that of the p16 gene and more closely related to the phosphorylation of pRb. In conclusion, the p16 protein expression is suggested as a promising biomarker for canine lymphoma cells, and the p16–pRb pathway could be a target for the better treatment of canine lymphomas. Abstract Cyclin-dependent kinase inhibitor p16 (CDKN2A) primarily functions as a negative regulator of the retinoblastoma protein (pRb) pathway to prevent pRb phosphorylation, thus playing a critical role in cell cycle arrest. In canine lymphoma cells, methylation due to inactivation of the p16 gene has been reported. However, its protein expression has not been examined in previous studies. In our in vitro study, the gene and protein expression of p16 and phosphorylated pRb were examined simultaneously in eight canine lymphoma and leukemia cell lines (17-71, CLBL-1, GL-1, CLC, CLGL-90, Ema, Nody-1, and UL-1). Methylation of the p16 gene was also explored using the demethylation drug 5-Aza-2′-deoxycytidine (5-Aza). After 5-Aza treatment, p16 gene and protein expression increased and pRb phosphorylation decreased, suggesting that both hypermethylation of the p16 gene and pRb hyperphosphorylation occurred in four out of eight cell lines (CLBL-1, CLC, Nody-1, and UL-1). Moreover, the estimation of p16’s protein expression was better than that of p16’s mRNA expression because the expression of the protein was more stable than those of the gene, and highly related to the phosphorylation of pRb. These results revealed that p16’s protein expression could be a promising biomarker for canine lymphoma cells.
Collapse
|
3
|
Cheng KY, Soh PXY, Bennett PF, Williamson P. Lymphoma in Australian Border Collies: survey results and pedigree analyses. Aust Vet J 2019; 97:14-22. [DOI: 10.1111/avj.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023]
Affiliation(s)
- KY Cheng
- Sydney School of Veterinary Science and School of Life and Environmental Sciences, Faculty of Science, Evelyn Williams Building B10; The University of Sydney; New South Wales 2006 Australia
| | - PXY Soh
- Sydney School of Veterinary Science and School of Life and Environmental Sciences, Faculty of Science, Evelyn Williams Building B10; The University of Sydney; New South Wales 2006 Australia
| | - PF Bennett
- Sydney School of Veterinary Science and School of Life and Environmental Sciences, Faculty of Science, Evelyn Williams Building B10; The University of Sydney; New South Wales 2006 Australia
| | - P Williamson
- Sydney School of Veterinary Science and School of Life and Environmental Sciences, Faculty of Science, Evelyn Williams Building B10; The University of Sydney; New South Wales 2006 Australia
| |
Collapse
|
4
|
Bennett PF, Taylor R, Williamson P. Demographic risk factors for lymphoma in Australian dogs: 6201 cases. J Vet Intern Med 2018; 32:2054-2060. [PMID: 30307659 PMCID: PMC6271309 DOI: 10.1111/jvim.15306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Lymphoma is common in the dog. Studies of population risk factors primarily have been derived from referral institution or insurance data. Objective To identify and quantify the host risk factors for lymphoma in a broad population of Australian dogs. Animals Data on 6201 client owned dogs were retrieved from a commercial veterinary laboratory, a general practice group and 2 referral hospitals. Methods Data collected included breed, sex, and neuter status. A reference population of 640 105 dogs was generated from the referral hospitals and from council registration data. The risk of lymphoma by sex and neuter status was calculated as odds ratios (OR). Results The study identified 30 breeds at increased risk of lymphoma, 15 that have not been reported previously, and 26 breeds at decreased risk, 18 that have not been reported previously. Males were over represented compared to females with an OR of 1.1 (95% CI, 1.1–1.2; P < .001). Neutered animals were at higher risk compared to intact animals with an OR of 3.2 (95% CI, 2.9–3.5) which was found in both males (OR, 2.8; 95% CI; 2.5–3.2) and females (OR, 4.4; 95% CI, 3.5–5.1). Conclusions and Clinical Importance Breed, sex, and neuter status alter the risk of lymphoma in dogs. These 3 factors must be considered when evaluating lymphoma risk as potential markers of underlying differences in disease etiology. Comparison of breeds at increased and decreased risk could be advantageous when evaluating specific etiological factors.
Collapse
Affiliation(s)
- Peter F Bennett
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, New South Wales, Australia
| | - Rosanne Taylor
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, New South Wales, Australia
| | - Peter Williamson
- Faculty of Science, School of Life and Environmental Science, University of Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Mochizuki H, Fujiwara-Igarashi A, Sato M, Goto-Koshino Y, Ohno K, Tsujimoto H. Genetic and epigenetic aberrations of p16 in feline primary neoplastic diseases and tumor cell lines of lymphoid and non-lymphoid origins. Vet J 2016; 219:27-33. [PMID: 28093106 DOI: 10.1016/j.tvjl.2016.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
The p16 gene acts as a tumor suppressor by regulating the cell cycle and is frequently inactivated in human and canine cancers. The aim of this study was to characterize genetic and epigenetic alterations of the p16 in feline lymphoid and non-lymphoid malignancies, using 74 primary tumors and 11 tumor cell lines. Cloning of feline p16 and subsequent sequence analysis revealed 11 germline sequence polymorphisms in control cats. Bisulfite sequencing analysis of the p16 promoter region in a feline lymphoma cell line revealed that promoter methylation was associated with decreased mRNA expression. Treatment with a demethylating agent restored mRNA expression of the silenced p16. PCR amplification and sequencing analysis detected homozygous loss (five tumors, 6.7%) and a missense mutation (one tumor, 1.4%) in the 74 primary tumors analyzed. Methylation-specific PCR analysis revealed promoter methylation in 10 primary tumors (14%). Promoter methylation was frequent in B cell lymphoid tumors (7/21 tumors, 33%). These genetic and epigenetic alterations were also observed in lymphoma and mammary gland carcinoma cell lines, but not detected in non-neoplastic control specimens. These data indicate that molecular alterations of the p16 locus may be involved in the development of specific types of feline cancer, and warrant further studies to evaluate the clinical value of this evolutionarily-conserved molecular alteration in feline cancers.
Collapse
Affiliation(s)
- H Mochizuki
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - A Fujiwara-Igarashi
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - M Sato
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Goto-Koshino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - H Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
|
7
|
Kong R, Zhang EB, Yin DD, You LH, Xu TP, Chen WM, Xia R, Wan L, Sun M, Wang ZX, De W, Zhang ZH. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer 2015; 14:82. [PMID: 25890171 PMCID: PMC4399399 DOI: 10.1186/s12943-015-0355-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/31/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown. METHODS Expression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with shPVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes. RESULTS The higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer. CONCLUSIONS Together, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.
Collapse
Affiliation(s)
- Rong Kong
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, PR China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Er-bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Dan-dan Yin
- Cancer Research and Therapy Center, The Second Affiliated Hospital of Southeast University, Nanjing, 210029, Jiangsu, PR China.
| | - Liang-hui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing, 210029, China.
| | - Tong-peng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Wen-ming Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Li Wan
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road, Nanjing, 210011, Jiangsu, PR China.
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Zhao-xia Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road, Nanjing, 210011, Jiangsu, PR China.
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Zhi-hong Zhang
- Departments of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
8
|
Ma D, Fang Q, Wang P, Gao R, Sun J, Li Y, Hu XY, Wang JS. Downregulation of HO-1 promoted apoptosis induced by decitabine via increasing p15INK4B promoter demethylation in myelodysplastic syndrome. Gene Ther 2015; 22:287-96. [DOI: 10.1038/gt.2015.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/08/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
|
9
|
Daly JA, Mortlock SA, Taylor RM, Williamson P. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State. Bioinform Biol Insights 2015; 9:59-67. [PMID: 27478369 PMCID: PMC4955975 DOI: 10.4137/bbi.s30523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis.
Collapse
Affiliation(s)
- Julie-Anne Daly
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Sally-Anne Mortlock
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Rosanne M Taylor
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Peter Williamson
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Fujiwara-Igarashi A, Goto-Koshino Y, Mochizuki H, Sato M, Fujino Y, Ohno K, Tsujimoto H. Inhibition of p16 tumor suppressor gene expression via promoter hypermethylation in canine lymphoid tumor cells. Res Vet Sci 2014; 97:60-3. [PMID: 24815345 DOI: 10.1016/j.rvsc.2014.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
To investigate the epigenetic regulation of the p16 gene in canine lymphoid tumor cells, its methylation status was examined in four canine lymphoid tumor cell lines. In three canine lymphoid tumor cell lines (CLBL-1, GL-1, and UL-1) with low-level p16 mRNA expression, 20 CpG sites in the promoter region of p16 gene were consistently methylated although all of the CpG sites were not methylated in another cell line (CL-1) and normal lymph node cells. The expression level of p16 mRNA in these three cell lines was restored after cultivation in the presence of a methylation inhibitor, 5-Aza-2'-deoxycitidine, indicating inactivation of p16 gene via hypermethylation. This study revealed the inactivation of p16 gene through hypermethylation of its CpG island in a fraction of canine lymphoid tumor cells.
Collapse
Affiliation(s)
- Aki Fujiwara-Igarashi
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuko Goto-Koshino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Mochizuki
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiko Sato
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Fujino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
11
|
Fujiwara-Igarashi A, Goto-Koshino Y, Sato M, Maeda S, Igarashi H, Takahashi M, Fujino Y, Ohno K, Tsujimoto H. Prognostic significance of the expression levels of the p16, p15, and p14 genes in dogs with high-grade lymphoma. Vet J 2014; 199:236-44. [DOI: 10.1016/j.tvjl.2013.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 11/03/2013] [Accepted: 11/06/2013] [Indexed: 12/16/2022]
|