1
|
Song Y, Ma B, Li J, Shuai J, Zhang M. Multiplex reverse transcription recombinase polymerase amplification combined with lateral flow biosensor for simultaneous detection of three viral pathogens in cattle. Talanta 2025; 281:126775. [PMID: 39226697 DOI: 10.1016/j.talanta.2024.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Bovine viral diarrhea virus (BVDV), bovine epidemic fever virus (BEFV), and bovine respiratory syncytial virus (BRSV) cause respiratory symptoms in cattle. The absence of rapid, precise, and easily accessible diagnostic methods poses difficulties for herders and veterinary epidemiologists during outbreaks of major infectious animal diseases. Considering the mixed infection of viruses, a multiple-detection method, reverse transcription recombinase polymerase amplification (mRT-RPA) combined with a lateral flow biosensor (LFB), was established to simultaneously detect the three pathogens. This technique is based on the specific binding of three differently labeled RT-RPA products (DNA sequences) to antibodies on the three test lines of the LFB, achieving multiplex detection through the presence or absence of coloration on the LFB test lines. The fluorescence values of the LFB test lines are recorded by a test strip reader. The mRT-RPA-LFB assay completes detection at a constant temperature of 41 °C within 33 min. The limits of detection (LODs) for BVDV, BEFV and BRSV were 2.62 × 101, 2.42 × 101 and 2.56 × 101 copies/μL, respectively. No cross-reactivity was observed with the other six bovine viruses. The developed method showed satisfactory intra- and inter-assay precision, and the average coefficients of variation were ranged from 2.92 % to 3.99 %. The diagnostic sensitivity and specificity were 98.11 % and 100 %, respectively, which were highly consistent with the RT-qPCR assay, and the kappa value was 0.988 (95 % confidence interval, CI). In general, the mRT-RPA-LFB assay has the potential to become a powerful tool for rapid screening of cattle diseases because of its advantages such as fast detection speed, convenient operation, strong specificity, and high sensitivity.
Collapse
Affiliation(s)
- Yating Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou, 310018, China.
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Shirafuji H, Kishida N, Murota K, Suda Y, Yanase T. Genetic Characterization of Palyam Serogroup Viruses Isolated in Japan from 1984 to 2018 and Development of a Real-Time RT-PCR Assay for Broad Detection of Palyam Serogroup Viruses and Specific Detection of Chuzan (Kasba) and D'Aguilar Viruses. Pathogens 2024; 13:550. [PMID: 39057776 PMCID: PMC11279806 DOI: 10.3390/pathogens13070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
We performed whole genome sequencing (WGS) of 15 Palyam serogroup virus (PALV) strains isolated from cattle or Culicoides biting midges in Japan from 1984 to 2018. We found that the PALV strains consisted of Chuzan (Kasba) virus (CHUV), D'Aguilar virus (DAGV), Bunyip Creek virus, and another PALV, Marrakai virus (MARV). The Japanese MARV strains isolated in 1997 were closely related to Australian PALV strains isolated in 1968-1976 in genome segments 2 and 10, but they were most closely related to other Japanese PALV strains in the other genome segments. Our data suggest that the Japanese MARV strains were reassortant viruses between Asian and Australian PALVs. In addition to the WGS, we developed a real-time reverse-transcription polymerase chain reaction assay that can broadly detect PALV and specifically detect CHUV and DAGV, utilizing the data obtained by the WGS in this study. We detected the DAGV gene in bovine stillborn fetuses and congenitally abnormal calves in 2019 using the newly developed assay. To our knowledge, this is the first report of isolation of MARV outside of Australia and the first report of detection of PALV in bovine fetuses or calves with congenital abnormality outside of Africa.
Collapse
Affiliation(s)
- Hiroaki Shirafuji
- Exotic Disease Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira 187-0022, Tokyo, Japan
| | - Natsumi Kishida
- Virus Group, Division of Infectious Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; (N.K.); (Y.S.)
| | - Katsunori Murota
- Epidemiology and Arbovirus Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Kagoshima, Japan; (K.M.); (T.Y.)
| | - Yuto Suda
- Virus Group, Division of Infectious Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; (N.K.); (Y.S.)
| | - Tohru Yanase
- Epidemiology and Arbovirus Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Kagoshima, Japan; (K.M.); (T.Y.)
| |
Collapse
|
3
|
Pyasi S, Gupta A, Hegde NR, Nayak D. Complete genome sequencing and assessment of mutation-associated protein dynamics of the first Indian bovine ephemeral fever virus (BEFV) isolate. Vet Q 2021; 41:308-319. [PMID: 34663182 PMCID: PMC8567923 DOI: 10.1080/01652176.2021.1995909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Bovine ephemeral fever (BEF) is a re-emerging disease caused by bovine ephemeral fever virus (BEFV). Although it poses a huge economic threat to the livestock sector, complete viral genome information from any South Asian country, including India, lacks. Aim Genome characterization of the first Indian BEFV isolate and to evaluate its genetic diversity by characterizing genomic mutations and their associated protein dynamics. Materials and Methods Of the nineteen positive blood samples collected from BEF symptomatic animals during the 2018-19 outbreaks in India, one random sample was used to amplify the entire viral genome by RT-PCR. Utilizing Sanger sequencing and NGS technology, a complete genome was determined. Genome characterization, genetic diversity and phylogenetic analyses were explored by comparing the results with available global isolates. Additionally, unique genomic mutations within the Indian isolate were investigated, followed by in-silico assessment of non-synonymous (NS) mutations impacts on corresponding proteins’ secondary structure, solvent accessibility and dynamics. Results The complete genome of Indian BEFV has 14,903 nucleotides with 33% GC with considerable genetic diversity. Its sequence comparison and phylogenetic analysis revealed a close relatedness to the Middle Eastern lineage. Genome-wide scanning elucidated 30 unique mutations, including 10 NS mutations in the P, L and GNS proteins. The mutational impact evaluation confirmed alterations in protein structure and dynamics, with minimal effect on solvent accessibility. Additionally, alteration in the interatomic interactions was compared against the wild type. Conclusion These findings extend our understanding of the BEFV epidemiological and pathogenic potential, aiding in developing better therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Shruti Pyasi
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Advika Gupta
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nagendra R Hegde
- Department of Biotechnology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Murota K, Ishii K, Mekaru Y, Araki M, Suda Y, Shirafuji H, Kobayashi D, Isawa H, Yanase T. Isolation of Culicoides- and Mosquito-Borne Orbiviruses in the Southwestern Islands of Japan Between 2014 and 2019. Vector Borne Zoonotic Dis 2021; 21:796-808. [PMID: 34463150 DOI: 10.1089/vbz.2021.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of arboviruses in livestock ruminants has often gone unrecognized owing to the fact that a significant percentage of arboviruses probably induce subclinical infections and/or negligible symptoms in infected animals. To determine the current situation of arbovirus circulation in the Yaeyama Islands, attempts to isolate viruses from bovine blood samples collected between 2014 and 2019 have been made. In total, 308 blood samples were collected during the study period, and 43 of them induced cytopathic effects (CPEs) in cell cultures. The identification of the CPE agents was performed by reported RT-PCR assays and a high-throughput analysis with a next-generation sequencing platform. The obtained viruses consisted of an orthobunyavirus (Peaton virus), Culicoides-borne orbiviruses (bluetongue virus serotypes 12 and 16, epizootic hemorrhagic disease virus [EHDV] serotypes 5, 6, and 7, D'Aguilar virus, and Bunyip Creek virus), and potential mosquito-borne orbiviruses (Yunnan orbivirus, Guangxi orbivirus, and Yonaguni orbivirus). Most of the orbiviruses were recovered from washed blood cells with mosquito cell cultures, suggesting that this combination was more efficient than other combinations such as plasma/blood cells and hamster cell lines. This marked the first time that the isolation of EHDV serotypes 5 and 6 and three potential mosquito-borne orbiviruses was recorded in Japan, showing a greater variety of orbiviruses on the islands than previously known. Genetic analysis of the isolated orbiviruses suggested that the Yaeyama Islands and its neighboring regions were epidemiologically related. Some of the viruses, especially the potential mosquito-borne orbiviruses, were isolated during several consecutive years, indicating their establishment on the islands.
Collapse
Affiliation(s)
- Katsunori Murota
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Keiko Ishii
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Yuji Mekaru
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Miho Araki
- Yaeyama Livestock Hygiene Service Center, Ishigaki, Japan
| | - Yuto Suda
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Hiroaki Shirafuji
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tohru Yanase
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| |
Collapse
|
5
|
Immunoinformatics Approach to Design Multi-Epitope- Subunit Vaccine against Bovine Ephemeral Fever Disease. Vaccines (Basel) 2021; 9:vaccines9080925. [PMID: 34452050 PMCID: PMC8402647 DOI: 10.3390/vaccines9080925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Bovine ephemeral fever virus (BEFV) is an overlooked pathogen, recently gaining widespread attention owing to its associated enormous economic impacts affecting the global livestock industries. High endemicity with rapid spread and morbidity greatly impacts bovine species, demanding adequate attention towards BEFV prophylaxis. Currently, a few suboptimum vaccines are prevailing, but were confined to local strains with limited protection. Therefore, we designed a highly efficacious multi-epitope vaccine candidate targeted against the geographically distributed BEFV population. By utilizing immunoinformatics technology, all structural proteins were targeted for B- and T-cell epitope prediction against the entire allele population of BoLA molecules. Prioritized epitopes were adjoined by linkers and adjuvants to effectively induce both cellular and humoral immune responses in bovine. Subsequently, the in silico construct was characterized for its physicochemical parameters, high immunogenicity, least allergenicity, and non-toxicity. The 3D modeling, refinement, and validation of ligand (vaccine construct) and receptor (bovine TLR7) then followed molecular docking and molecular dynamic simulation to validate their stable interactions. Moreover, in silico cloning of codon-optimized vaccine construct in the prokaryotic expression vector (pET28a) was explored. This is the first time HTL epitopes have been predicted using bovine datasets. We anticipate that the designed construct could be an effective prophylactic remedy for the BEF disease that may pave the way for future laboratory experiments.
Collapse
|
6
|
Yamamoto K, Hiromatsu R, Kaida M, Kato T, Yanase T, Shirafuji H. Isolation of epizootic hemorrhagic disease virus serotype 7 from cattle showing fever in Japan in 2016 and improvement of a reverse transcription-polymerase chain reaction assay to detect epizootic hemorrhagic disease virus. J Vet Med Sci 2021; 83:1378-1388. [PMID: 34248104 PMCID: PMC8498830 DOI: 10.1292/jvms.20-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an arthropod-borne disease of wild and domestic ruminants caused by the EHD virus (EHDV). To date, seven EHDV serotypes have been identified. In Japan, strain Ibaraki of EHDV serotype 2 has caused outbreaks of Ibaraki disease in cattle. In addition, EHDV serotype 7 (EHDV-7) has caused large-scale EHD epizootics. In mid-September 2016, eight cattle at a breeding farm in Fukuoka Prefecture, Japan developed fever. Since EHDV-7 was detected in sentinel cattle in western Japan in 2016, we suspected that the cause of this fever might be an EHDV-7 infection. In this study, we tested cattle for EHDV-7 and some other viruses. Consequently, EHDV was isolated from washed blood cells collected from three of the eight cattle, and genetic analysis of genome segment 2 revealed that this isolate was EHDV-7. Moreover, all affected cattle tested positive for anti-EHDV-7 neutralizing antibodies. Our results suggest that the fever was caused by EHDV-7 infection. In addition, we modified a conventional reverse transcription polymerase chain reaction assay for the specific detection of EHDV. This modified assay could detect various strains of EHDV isolated in Japan, Australia, and North America. Furthermore, the assay permitted the detection of EHDV-7 in blood cells collected from seven of the eight cattle. We believe that this modified assay will be a useful tool for the diagnosis of EHD.
Collapse
Affiliation(s)
- Kunitaka Yamamoto
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Riki Hiromatsu
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Mina Kaida
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| |
Collapse
|
7
|
Mungthong K, Khaing ST, Otsubo T, Hatanaka C, Yoneyama S, Hisamatsu S, Murakami H, Tsukamoto K. Broad detection and quick differentiation of bovine viral diarrhea viruses 1 and 2 by a reverse transcription loop-mediated isothermal amplification test. J Vet Med Sci 2021; 83:1321-1329. [PMID: 34162783 PMCID: PMC8437728 DOI: 10.1292/jvms.20-0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For broad detection of pestivirus A (bovine viral diarrhea virus 1: BVDV1) and pestivirus B (BVDV2) by a reverse transcription loop-mediated isothermal amplification (RT-LAMP) test, the P25 primer set was designed using nucleotide sequences of 5'-UTR region of 1454 BVDVs. The base coverage of each primer against diverse BVDVs were more than 99% in each base position. The one step LAMP test with the P25 primer set could detect both BVDV1 (TK) and BVDV2 (KZ), but did not amplify 5 other bovine viruses. Detection limit of the LAMP test was 103 copies of synthesized DNAs, and 10-3 and 10-4 dilutions of viral RNAs of TK and KZ strains, respectively, whereas that with current Aebischer's primer set was 10-2 dilution and negative of these RNAs, respectively. All of the 63 viral RNA samples of persistently infected (PI) cattle, consisting of the 1a (12), 1b (31), 1c (11), and 2a (9) subgenotypes, were broadly detected with the P25, while only 65% of them were positive with Aebischer's primer set. The validation study showed that the RT-LAMP test with the P25 had 100% sensitivity and 100% specificity against that with updated Vilcek's PCR primers. Also, by using the P26 primer set which contained 3 species-specific primers, all 63 RNA samples were clearly distinguished from BVDV1 or BVDV2 by the typing RT-LAMP test. These results indicate that the one step RT-LAMP test using P25 or P26 primer sets would be useful for broad detection and rapid differentiation of BVDV1 and BVDV2.
Collapse
Affiliation(s)
- Kanumporn Mungthong
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.,Present address: Kasetsart University, Veterinary Teaching-Hospital Nongpho, Thailand
| | - Soe Thiri Khaing
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.,Present address: Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Takehiko Otsubo
- Livestock Hygiene Service Center of Chiba Prefecture, Sakura, Chiba 285-0072, Japan
| | - Chihiro Hatanaka
- Livestock Hygiene Service Center of Chiba Prefecture, Sakura, Chiba 285-0072, Japan
| | - Shuji Yoneyama
- Animal Hygiene Service Centers of Tochigi Prefecture, Hirade, Tochigi 321-0905, Japan
| | - Shin Hisamatsu
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hironobu Murakami
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
8
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
9
|
Yanase T, Kato T, Hayama Y, Shirafuji H, Yamakawa M, Tanaka S. Oral Susceptibility of Japanese Culicoides (Diptera: Ceratopogonidae) Species to Akabane Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:533-539. [PMID: 30418597 DOI: 10.1093/jme/tjy201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/09/2023]
Abstract
To test their virus susceptibility and capacity as transmission vectors, Japanese Culicoides species were artificially fed a mixture of Akabane virus (AKAV) and bovine blood, and virus recovery was attempted from infected midges 9-11 d post-exposure. Culicoides tainanus, C. punctatus, C. humeralis, C. jacobsoni, C. oxystoma, and C. asiana were found to be orally susceptible to AKAV. Virus titers in single infected midges of C. tainanus, C. oxystoma, C. punctatus, and C. jacobsoni ranged from 100.75 to 104.0 TCID50 (tissue culture infectious dose). The titers in the infected C. oxystoma were significantly higher than those in the other infected species. Viral RNA was detected from both midges testing positive and those testing negative for infectious virus particles, but the viral RNA copies in the infectious virus-negative midges were significantly lower than those in the infectious virus-positive midges. Lower viral amplification, limited dissemination or both caused by tissue barriers might occur in infected midges from which infectious viruses were undetectable. A fully disseminated infection was developed in orally infected C. oxystoma and C. tainanus. This finding indicates their capacity to transmit AKAV, assuming that salivary gland barriers have limited effects on viral entry to and replication in salivary gland tissue. This result also suggests that the other orally susceptible species are potentially competent for AKAV transmission and would be considered active vectors of its spread.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Chuzan, Kagoshima, Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, NARO, Chuzan, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, NARO, Chuzan, Kagoshima, Japan
| | - Makoto Yamakawa
- Kyushu Research Station, National Institute of Animal Health, NARO, Chuzan, Kagoshima, Japan
| | - Shogo Tanaka
- Kyushu Research Station, National Institute of Animal Health, NARO, Chuzan, Kagoshima, Japan
| |
Collapse
|
10
|
Hou P, Zhao G, Wang H, He C, Huan Y, He H. Development of a recombinase polymerase amplification combined with lateral-flow dipstick assay for detection of bovine ephemeral fever virus. Mol Cell Probes 2017; 38:31-37. [PMID: 29288049 PMCID: PMC7126596 DOI: 10.1016/j.mcp.2017.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
Abstract
Bovine ephemeral fever virus (BEFV), identified as the causative pathogen of bovine ephemeral fever (BEF), is responsible for increasing numbers of epidemics/outbreaks and has a significant harmful effect on the livestock industry. Therefore, a rapid detection assay is imperative for BEFV diagnosis. In this study, we described the development of lateral-flow dipstick isothermal recombinase polymerase amplification (LFD-RPA) assays for detection of BEFV. RPA primers and LF probes were designed by targeting the specific G gene, and the amplification product can be visualized on a simple lateral flow dipstick with the naked eyes. The amplification reaction was performed at 38 °C for 20 min and LFD incubation time within 5 min. The detection limit of this assay was 8 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses such as bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine vesicular stomatitis virus. In addition, the assay was performed with total 128 clinical specimens and the diagnostic results were compared with conventional RT-PCR, real-time quantative(q) PCR. The result showed that the coincidence rate of BEFV LFD-RPA and real-time qPCR was 96.09% (123/128), which was higher than conventional RT-PCR. The RPA combined with LFD assay probably provides a rapid and sensitive alternative for diagnosis of BEFV infections outbreak. RPA combined with LFD assay was developed first time to detect BEFV. The detection from cDNA could be completed within 30 min and be easily visualized with the naked eyes. The RPA combined with LFD assay probably provides a alternative for diagnosis of BEFV.
Collapse
Affiliation(s)
- Peili Hou
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Guimin Zhao
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Chengqiang He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
11
|
Hirashima Y, Nojiri M, Ohtsuka Y, Kato T, Shirafuji H, Kurazono M, Imafuji T, Yanase T. Resurgence of bovine ephemeral fever in mainland Japan in 2015 after a 23-year absence. J Vet Med Sci 2017; 79:904-911. [PMID: 28392506 PMCID: PMC5447980 DOI: 10.1292/jvms.16-0345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In September and October 2015, suspected cases of bovine ephemeral fever (BEF) were reported in the mainland region of Kagoshima Prefecture and on Tanegashima Island. The genome of the BEF virus (BEFV) was detected in the diseased cows and the cows that had recovered. The serum obtained from the affected cows contained high titers of BEFV-neutralizing antibody. In total, 18 affected cows were demonstrated to be infected with BEFV during the outbreak. Our findings showed evidence that BEF occurred in mainland Japan after a 23-year absence. Phylogenetic analysis based on the surface glycoprotein (G) gene revealed that BEFVs detected in the affected cows were genetically distinct from previous Japanese BEFVs, but were close to BEFVs circulating in Taiwan and mainland China in recent years. Amino acid substitution in the neutralizing epitope domains of the G protein was limited between the detected viruses and the vaccine strain (YHL isolate), and high titers of the neutralizing antibody against the YHL isolate were induced in the infected cattle during the disease occurrences. Therefore, current BEF vaccines probably elicit protective immunity against the BEFVs detected in 2015, although their effectiveness should be assessed. Since the BEFV vaccination rates are estimated to be low, a BEF outbreak should be considered a possibility in mainland Japan.
Collapse
Affiliation(s)
- Yoshimasa Hirashima
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan
| | - Mariko Nojiri
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan.,Nansatsu Livestock Hygiene Service Center, 4210-18 Kohri, Chiran, Minamikyushu, Kagoshima 897-0302, Japan
| | - Yasuhiro Ohtsuka
- Kumage Branch, Kagoshima Central Livestock Hygiene Service Center, 6065 Noma, Nakatane, Kagoshima 891-3604, Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Mitsuteru Kurazono
- Kumage Branch, Kagoshima Central Livestock Hygiene Service Center, 6065 Noma, Nakatane, Kagoshima 891-3604, Japan
| | - Toyoshige Imafuji
- Nansatsu Livestock Hygiene Service Center, 4210-18 Kohri, Chiran, Minamikyushu, Kagoshima 897-0302, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan
| |
Collapse
|
12
|
Purnomo Edi S, Ibrahim A, Sukoco R, Bunali L, Taguchi M, Kato T, Yanase T, Shirafuji H. Molecular characterization of an Akabane virus isolate from West Java, Indonesia. J Vet Med Sci 2017; 79:774-779. [PMID: 28302930 PMCID: PMC5402201 DOI: 10.1292/jvms.17-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We isolated an arbovirus from bovine blood in Indonesia. The arbovirus was obtained from the plasma of a cow showing no clinical symptoms in West Java in February 2014, and was identified as Akabane virus (AKAV) by AKAV-specific RT-PCR and subsequent sequence analysis. Phylogenetic analysis based on partial S segment indicated the AKAV isolate, WJ-1SA/P/2014, was most closely related with two isolates from Israel and Turkey reported in 2001 and 2015, respectively, and that WJ-1SA/P/2014 isolate belongs to AKAV genogroup Ib. This is the first isolation of AKAV from Indonesia.
Collapse
Affiliation(s)
- Suryo Purnomo Edi
- Disease Investigation Center Subang, Directorate General of Livestock and Animal Health Services, Jl. Terusan Garuda Blok Werasari, RT.33/RW.11, Subang, West Java 41212, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yazdani F, bakhshesh M, Esmaelizad M, Sadigh ZA. Expression of G1- epitope of bovine ephemeral fever virus in E. coli : A novel candidate to develop ELISA kit. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2017; 8:209-213. [PMID: 29085608 PMCID: PMC5653884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/08/2016] [Indexed: 12/03/2022]
Abstract
Bovine ephemeral fever is an acute and arthropod-borne viral disease of cattle and water buffalo which occurs seasonally in most of the world tropical and subtropical regions. The epizootic feature of the disease has been reported in Iran with serious economic consequences. The surface glycoprotein G of bovine ephemeral fever virus (BEFV) is composed of 4 antigenic sites (G1-G4) and plays the main role for eliciting neutralizing antibodies and protective immunity. The G1 - epitope is a linear antigenic site and conserved among BEFV strains. In order to develop an ELISA test based on G1-epitope as coating antigen, this study was carried out to express the recombinant G1-epitope of BEFV in prokaryotic system. Using PCR and specific primers, a length of 88 amino acid of the G glycoprotein of BEFV including G1- epitope was amplified and cloned into the expression vector pGEX-4T-1, with the GST moiety. The recombinant plasmid (pGEX-4T-1-G1) was then transformed into Escherichia coli BL21 and expression of fusion protein was induced by 0.10 mM IPTG. The maximum expression of the fusion protein was obtained at 16 hr post induction as verified by SDS-PAGE electrophoresis, and it was also confirmed that this protein bearing G1- epitope is sufficiently biologically active to bind to anti-BEFV serum in western blot experiment.
Collapse
Affiliation(s)
- Fereshteh Yazdani
- Department of Animal Virology, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Organization Extension (AREEO), Karaj, Iran
| | - Mehran bakhshesh
- Department of Animal Virology, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Organization Extension (AREEO), Karaj, Iran,Correspondence: Mehran Bakhshesh. PhD, Department of Animal Virology, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:
| | - Majid Esmaelizad
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Organization Extension (AREEO), Karaj, Iran
| | - Zohre Azita Sadigh
- Department of Human Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Organization Extension (AREEO), Karaj, Iran
| |
Collapse
|
14
|
Kato T, Yanase T, Suzuki M, Katagiri Y, Ikemiyagi K, Takayoshi K, Shirafuji H, Ohashi S, Yoshida K, Yamakawa M, Tsuda T. Monitoring for bovine arboviruses in the most southwestern islands in Japan between 1994 and 2014. BMC Vet Res 2016; 12:125. [PMID: 27342576 PMCID: PMC4921034 DOI: 10.1186/s12917-016-0747-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/16/2016] [Indexed: 11/12/2022] Open
Abstract
Background In Japan, epizootic arboviral infections have severely impacted the livestock industry for a long period. Akabane, Aino, Chuzan, bovine ephemeral fever and Ibaraki viruses have repeatedly caused epizootic abnormal births and febrile illness in the cattle population. In addition, Peaton, Sathuperi, Shamonda and D’Aguilar viruses and epizootic hemorrhagic virus serotype 7 have recently emerged in Japan and are also considered to be involved in abnormal births in cattle. The above-mentioned viruses are hypothesized to circulate in tropical and subtropical Asia year round and to be introduced to temperate East Asia by long-distance aerial dispersal of infected vectors. To watch for arbovirus incursion and assess the possibility of its early warning, monitoring for arboviruses was conducted in the Yaeyama Islands, located at the most southwestern area of Japan, between 1994 and 2014. Results Blood sampling was conducted once a year, in the autumn, in 40 to 60 healthy cattle from the Yaeyama Islands. Blood samples were tested for arboviruses. A total of 33 arboviruses including Akabane, Peaton, Chuzan, D’ Aguilar, Bunyip Creek, Batai and epizootic hemorrhagic viruses were isolated from bovine blood samples. Serological surveillance for the bovine arboviruses associated with cattle diseases in young cattle (ages 6–12 months: had only been alive for one summer) clearly showed their frequent incursion into the Yaeyama Islands. In some cases, the arbovirus incursions could be detected in the Yaeyama Islands prior to their spread to mainland Japan. Conclusions We showed that long-term surveillance in the Yaeyama Islands could estimate the activity of bovine arboviruses in neighboring regions and may provide a useful early warning for likely arbovirus infections in Japan. The findings in this study could contribute to the planning of prevention and control for bovine arbovirus infections in Japan and cooperative efforts among neighboring countries in East Asia. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0747-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan.
| | - Moemi Suzuki
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Yoshito Katagiri
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Kazufumi Ikemiyagi
- Yaeyama Livestock Hygiene Service Center, 1-2 Miyara, Ishigaki, Okinawa, 907-0022, Japan
| | - Katsunori Takayoshi
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan
| | - Seiichi Ohashi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kazuo Yoshida
- Exotic Disease Research Station, National Institute of Animal Health, 6-20-1 Josuihoncho, Kodaira, Tokyo, 187-0222, Japan
| | - Makoto Yamakawa
- Exotic Disease Research Station, National Institute of Animal Health, 6-20-1 Josuihoncho, Kodaira, Tokyo, 187-0222, Japan
| | - Tomoyuki Tsuda
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
15
|
Hayama Y, Moriguchi S, Yanase T, Suzuki M, Niwa T, Ikemiyagi K, Nitta Y, Yamamoto T, Kobayashi S, Murai K, Tsutsui T. Epidemiological analysis of bovine ephemeral fever in 2012-2013 in the subtropical islands of Japan. BMC Vet Res 2016; 12:47. [PMID: 26956227 PMCID: PMC4784302 DOI: 10.1186/s12917-016-0673-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background Bovine ephemeral fever (BEF) is a febrile disease of cattle that is transmitted by arthropod vectors such as mosquitoes and Culicoides biting midges. An outbreak of BEF recently occurred in Ishigaki Island and surrounding islands that are located southwest of Japan. In this study, an epidemiological analysis was conducted to understand the temporal and spatial characteristics of the outbreak. Factors associated with the disease spread within Ishigaki Island were investigated by hierarchical Bayesian models. The possibility of between-island transmission by windborne vectors and transmission by long-distance migration of infected vectors were examined using atmospheric dispersion models. Results In September 2012, the first case of the disease was detected in the western part of Ishigaki Island. In 1 month, it had rapidly spread to the southern part of the island and to surrounding islands, and led to 225 suspected cases of BEF during the outbreak. The dispersion model demonstrated the high possibility of between-island transmission by wind. Spatial analysis showed that paddy fields, farmlands, and slope gradients had a significant impact on the 1-km cell-level incidence risk. These factors may have influenced the habitats and movements of the vectors with regard to the spread of BEF. A plausible incursion event of infected vectors from Southeast Asia to Ishigaki Island was estimated to have occurred at the end of August. Conclusion This study revealed that the condition of a terrain and land use significantly influenced disease transmission. These factors are important in assessing favorable environments for related vectors. The results of the dispersion model indicated the likely transmission of the infected vectors by wind on the local scale and on the long-distance scale. These findings would be helpful for developing a surveillance program and developing preventive measures against BEF.
Collapse
Affiliation(s)
- Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Sachiko Moriguchi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan. .,Department of Environmental Science Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan.
| | - Moemi Suzuki
- Yaeyama Livestock Hygiene Service Center, Okinawa Prefectural Government, Okinawa, Japan. .,Okinawa Prefectural Institute of Animal Health, Okinawa, Japan.
| | - Tsuyoshi Niwa
- Okinawa Prefectural Institute of Animal Health, Okinawa, Japan.
| | | | - Yoshiki Nitta
- Yaeyama Livestock Hygiene Service Center, Okinawa Prefectural Government, Okinawa, Japan.
| | - Takehisa Yamamoto
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Sota Kobayashi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Kiyokazu Murai
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Toshiyuki Tsutsui
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
16
|
Walker PJ, Klement E. Epidemiology and control of bovine ephemeral fever. Vet Res 2015; 46:124. [PMID: 26511615 PMCID: PMC4624662 DOI: 10.1186/s13567-015-0262-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Bovine ephemeral fever (or 3-day sickness) is an acute febrile illness of cattle and water buffaloes. Caused by an arthropod-borne rhabdovirus, bovine ephemeral fever virus (BEFV), the disease occurs seasonally over a vast expanse of the globe encompassing much of Africa, the Middle East, Asia and Australia. Although mortality rates are typically low, infection prevalence and morbidity rates during outbreaks are often very high, causing serious economic impacts through loss of milk production, poor cattle condition at sale and loss of traction power at harvest. There are also significant impacts on trade to regions in which the disease does not occur, including the Americas and most of Europe. In recent years, unusually severe outbreaks of bovine ephemeral fever have been reported from several regions in Asia and the Middle East, with mortality rates through disease or culling in excess of 10–20%. There are also concerns that, like other vector-borne diseases of livestock, the geographic distribution of bovine ephemeral fever could expand into regions that have historically been free of the disease. Here, we review current knowledge of the virus, including its molecular and antigenic structure, and the epidemiology of the disease across its entire geographic range. We also discuss the effectiveness of vaccination and other strategies to prevent or control infection.
Collapse
Affiliation(s)
- Peter J Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Hebrew University, 76100, Rehovot, Israel.
| |
Collapse
|
17
|
Shirafuji H, Yazaki R, Shuto Y, Yanase T, Kato T, Ishikura Y, Sakaguchi Z, Suzuki M, Yamakawa M. Broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 and specific detection of Akabane, Aino and Peaton viruses by newly developed multiple TaqMan assays. J Virol Methods 2015; 225:9-15. [PMID: 26341063 DOI: 10.1016/j.jviromet.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/30/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022]
Abstract
TaqMan assays were developed for the broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 in the genus Orthobunyavirus and also for the specific detection of three viruses in the lineage, Akabane, Aino and Peaton viruses (AKAV, AINOV and PEAV, respectively). A primer and probe set was designed for the broad-range detection of Simbu serogroup lineage 1 (Pan-Simbu1 set) mainly targeting AKAV, AINOV, PEAV, Sathuperi and Shamonda viruses (SATV and SHAV), and the forward and reverse primers of the Pan-Simbu1 set were also used for the specific detection of AKAV with another probe (AKAV-specific set). In addition, two more primer and probe sets were designed for AINOV- and PEAV-specific detection, respectively (AINOV- and PEAV-specific sets). All of the four primer and probe sets successfully detected targeted viruses, and thus broad-range and specific detection of all the targeted viruses can be achieved by using two multiplex assays and a single assay in a dual (two-color) assay format when another primer and probe set for a bovine β-actin control is also used. The assays had an analytical sensitivity of 10 copies/tube for AKAV, at least 100 copies/tube for AINOV, 100 copies/tube for PEAV, one copy/tube for SATV and at least 10 copies/tube for SHAV, respectively. Diagnostic sensitivity of the assays was tested with field-collected bovine samples, and the results suggested that the sensitivity was higher than that of a conventional RT-PCR. These data indicate that the newly developed TaqMan assays will be useful tools for the diagnosis and screening of field-collected samples for infections of AKAV and several other arboviruses belonging to the Simbu serogroup lineage 1.
Collapse
Affiliation(s)
- Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan.
| | - Ryu Yazaki
- Kusu Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Yozo Shuto
- Oita Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Youji Ishikura
- Domestic Livestock Disease Identification Office, Food Safety Promotion Division, Shimane Prefectural Government, Japan
| | - Zenjiro Sakaguchi
- Kagoshima Central Livestock Hygiene Service Center, Kagoshima Prefectural Government, Japan
| | - Moemi Suzuki
- Okinawa Prefectural Institute of Animal Health, Okinawa Prefectural Government, Japan
| | - Makoto Yamakawa
- Viral Disease and Epidemiology Research Division, NIAH, NARO, Japan
| |
Collapse
|