1
|
Mečionytė I, Palubinskas G, Anskienė L, Antanaitis R, Yilmaz A, Tapio I, Žilaitis V. The Association between Blood Β-Hydroxybutyric Acid Concentration in the Second Week of Lactation and Reproduction Performance of Lithuanian Black and White Cows. Animals (Basel) 2022; 12:481. [PMID: 35203189 PMCID: PMC8868438 DOI: 10.3390/ani12040481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperketonemia is a very common metabolic state in dairy cows, which result in lower milk production, impaired fertility, and increased frequency of other diseases. In this study, we aimed to determine the influence of season, parity, and milk yield of cows on beta-hydroxybutyrate (BHB) concentration in the second week of lactation (WK 2) and establish the relationship between BHB concentration in WK 2 and reproduction performance traits such as insemination rate and first insemination day of Lithuanian Black and White dairy cows. The study included clinically healthy Lithuanian Black and White cows (n = 692). Blood BHB concentration was measured using capillary blood samples collected after morning milking when cows were 7-10 DIM. The impact of WK 2 blood BHB concentration on the insemination rate and first insemination day were investigated. The effect of BHB was evaluated according to the season, parity, and milk yield per lactation (305 DIM). Significant differences were observed in BHB concentration in WK 2 due to season and parity, but no statistically significant differences were observed for milk yields (305 d). Increased blood BHB concentration in WK 2 negatively affected insemination rate (p < 0.001) and first insemination day (p < 0.001). The study findings indicate that BHB concentration in WK 2 depends on season and parity, while the milk yield is not associated with BHB concentration. High BHB concentration in WK 2 increases insemination rate and delays the first insemination day for high milk-yielding Lithuanian Black and White dairy cows.
Collapse
Affiliation(s)
- Indrė Mečionytė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.)
| | - Giedrius Palubinskas
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.)
| | - Lina Anskienė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.)
| | - Ramūnas Antanaitis
- Large Animals Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (R.A.); (V.Ž.)
| | - Ayhan Yilmaz
- Department of Animal Science, Agriculture Faculty, Siirt University, 56100 Siirt, Turkey;
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland;
| | - Vytuolis Žilaitis
- Large Animals Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (R.A.); (V.Ž.)
| |
Collapse
|
2
|
Satoła A, Bauer EA. Predicting Subclinical Ketosis in Dairy Cows Using Machine Learning Techniques. Animals (Basel) 2021; 11:ani11072131. [PMID: 34359259 PMCID: PMC8300340 DOI: 10.3390/ani11072131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The maintenance of cows in good health and physical condition is an important component of dairy cattle management. One of the major metabolic disorders in dairy cows is subclinical ketosis. Due to financial and organizational reasons it is often impossible to test all cows in a herd for ketosis using standard blood examination method. Using milk data from test-day records, obtained without additional costs for breeders, we found diagnostic models identifying cows-at-risk of subclinical ketosis. In addition, to select the best models, we present a general scoring approach for various machine learning models. With our models, breeders can identify dairy cows-at-risk of subclinical ketosis and implement appropriate management strategies and prevent losses in milk production. Abstract The diagnosis of subclinical ketosis in dairy cows based on blood ketone bodies is a challenging and costly procedure. Scientists are searching for tools based on results of milk performance assessment that would allow monitoring the risk of subclinical ketosis. The objective of the study was (1) to design a scoring system that would allow choosing the best machine learning models for the identification of cows-at-risk of subclinical ketosis, (2) to select the best performing models, and (3) to validate them using a testing dataset containing unseen data. The scoring system was developed using two machine learning modeling pipelines, one for regression and one for classification. As part of the system, different feature selections, outlier detection, data scaling and oversampling methods were used. Various linear and non-linear models were fit using training datasets and evaluated on holdout, testing the datasets. For the assessment of suitability of individual models for predicting subclinical ketosis, three β-hydroxybutyrate concentration in blood (bBHB) thresholds were defined: 1.0, 1.2 and 1.4 mmol/L. Considering the thresholds of 1.2 and 1.4, the logistic regression model was found to be the best fitted model, which included independent variables such as fat-to-protein ratio, acetone and β-hydroxybutyrate concentrations in milk, lactose percentage, lactation number and days in milk. In the cross-validation, this model showed an average sensitivity of 0.74 or 0.75 and specificity of 0.76 or 0.78, at the pre-defined bBHB threshold 1.2 or 1.4 mmol/L, respectively. The values of these metrics were also similar in the external validation on the testing dataset (0.72 or 0.74 for sensitivity and 0.80 or 0.81 for specificity). For the bBHB threshold at 1.0 mmol/L, the best classification model was the model based on the SVC (Support Vector Classification) machine learning method, for which the sensitivity in the cross-validation was 0.74 and the specificity was 0.73. These metrics had lower values for the testing dataset (0.57 and 0.72 respectively). Regression models were characterized by poor fitness to data (R2 < 0.4). The study results suggest that the prediction of subclinical ketosis based on data from test-day records using classification methods and machine learning algorithms can be a useful tool for monitoring the incidence of this metabolic disorder in dairy cattle herds.
Collapse
Affiliation(s)
- Alicja Satoła
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
- Correspondence:
| | - Edyta Agnieszka Bauer
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland;
| |
Collapse
|
3
|
Sabek A, Li C, Du C, Nan L, Ni J, Elgazzar E, Ma Y, Salem AZM, Zhang S. Effects of parity and days in milk on milk composition in correlation with β-hydroxybutyrate in tropic dairy cows. Trop Anim Health Prod 2021; 53:270. [PMID: 33876309 DOI: 10.1007/s11250-021-02690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The current study was conducted to evaluate the effect of parity and days in milk on milk yield and milk production traits and their correlation with β-hydroxybutyrate (BHB) concentrations in milk of Chinese tropic Holstein dairy cows which are adapted to a humid subtropical climate in central China. About 3055 milking records of Holstein cows were obtained from three farms in the hot region in the center of China. The records were classified according to parity to 4 categories: first parity, second parity, third parity, and greater than third parity. According to days in milk, there were 4 groups, first group from (1-100 days), second group from (101-200 days), third group from (201-305 days), and fourth group (>305 days). Milk samples collected between April and November 2019 from the three farms were routinely checked for milk components including BHB using mid-infrared spectroscopy a MilkoScan FT+ (Foss, Hillerød, Denmark). Data were analyzed by multivariate analysis of variance (generalized linear model, GLM). Pearson's correlation coefficients were used to measure the correlation between SCC and BHB with milk yield and milk production traits. Results showed the significant effect of parity and days in milk on milk yield and milk production traits. There was a negative effect of parity and days in milk on milk quality, with increasing parity and days in milk being associated with higher somatic cell count (SCC) (P <0.001). Days in milk significantly affected (P=0.001) BHB. It was concluded that with increasing parity and prolonged days in milk, there was a negative effect on milk quality and udder health of the tropic dairy cows in central China. Based on the results of the current study, sampling milk for specific metabolites, somatic cell count, and quality are sufficient to asses herd health.
Collapse
Affiliation(s)
- Ahmed Sabek
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Chunfang Li
- Hebei Livestock Breeding Station, Shijiazhuang, Hebei, People's Republic of China
- Hebei Technological Innovation Center of Cattle Germplasm Resources, Shijiazhuang, Hebei, People's Republic of China
| | - Chao Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Liangkang Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junqing Ni
- Hebei Livestock Breeding Station, Shijiazhuang, Hebei, People's Republic of China
- Hebei Technological Innovation Center of Cattle Germplasm Resources, Shijiazhuang, Hebei, People's Republic of China
| | - Eman Elgazzar
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Yabing Ma
- Hebei Livestock Breeding Station, Shijiazhuang, Hebei, People's Republic of China
- Hebei Technological Innovation Center of Cattle Germplasm Resources, Shijiazhuang, Hebei, People's Republic of China
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Niero G, Bobbo T, Callegaro S, Visentin G, Pornaro C, Penasa M, Cozzi G, De Marchi M, Cassandro M. Dairy Cows' Health during Alpine Summer Grazing as Assessed by Milk Traits, Including Differential Somatic Cell Count: A Case Study from Italy. Animals (Basel) 2021; 11:ani11040981. [PMID: 33915759 PMCID: PMC8067137 DOI: 10.3390/ani11040981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Dairy herds in alpine areas usually adopt summer grazing, mainly to reduce feeding costs. This practice is related to the maintenance of local traditions and to the manufacturing of niche dairy products. However, it is important to assess the impact of this practice on cattle health. This case study investigated how milk-related health traits vary across extensive grazing during the summer period, using data collected in a dairy herd whose cows were repeatedly controlled for individual milk samples. Although the transition from barn farming to pasture led to a reduction in milk production, proper grazing management can make dairy cows more resilient in terms of udder health and metabolic efficiency. Findings of the present research report suggested that pasture can be adopted to maintain dairy herd sustainability without impairing animal health. Abstract Extensive summer grazing is a dairy herd management practice frequently adopted in mountainous areas. Nowadays, this activity is threatened by its high labour demand, but it is fundamental for environmental, touristic and economic implications, as well as for the preservation of social and cultural traditions. Scarce information on the effects of such low-input farming systems on cattle health is available. Therefore, the present case study aimed at investigating how grazing may affect the health status of dairy cows by using milk traits routinely available from the national milk recording scheme. The research involved a dairy herd of 52 Simmental and 19 Holstein × Simmental crossbred cows. The herd had access to the pasture according to a rotational grazing scheme from late spring up to the end of summer. A total of 616 test day records collected immediately before and during the grazing season were used. Individual milk yield was registered during the milking procedure. Milk samples were analysed for composition (fat, protein, casein and lactose contents) and health-related milk indicators (electrical conductivity, urea and β-hydroxybutyrate) using mid-infrared spectroscopy. Somatic cell count (SCC) and differential SCC were also determined. Data were analysed with a linear mixed model, which included the fixed effects of the period of sampling, cow breed, stage of lactation and parity, and the random effects of cow nested within breed and the residual. The transition from barn farming to pasture had a negative effect on milk yield, together with a small deterioration of fat and protein percentages. Health-related milk indicators showed a minor deterioration of the fat to protein ratio, differential SCC and electrical conductivity, particularly towards the end of the grazing season, whereas the somatic cell score and β-hydroxybutyrate were relatively constant. Overall, the study showed that, when properly managed, pasture grazing does not have detrimental effects on dairy cows in terms of udder health and efficiency. Therefore, the proper management of cows on pasture can be a valuable solution to preserve the economic, social and environmental sustainability of small dairy farms in the alpine regions, without impairing cows’ health.
Collapse
Affiliation(s)
- Giovanni Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Tania Bobbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Simone Callegaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Giulio Visentin
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy
- Correspondence: ; Tel.: +39-051-20-97047
| | - Cristina Pornaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Giulio Cozzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (G.N.); (T.B.); (S.C.); (C.P.); (M.P.); (M.D.M.); (M.C.)
| |
Collapse
|
5
|
Zhang G, Mandal R, Wishart DS, Ametaj BN. A Multi-Platform Metabolomics Approach Identifies Urinary Metabolite Signatures That Differentiate Ketotic From Healthy Dairy Cows. Front Vet Sci 2021; 8:595983. [PMID: 33575283 PMCID: PMC7871000 DOI: 10.3389/fvets.2021.595983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ketosis and subclinical ketosis are widespread among dairy cows especially after calving. Etiopathology of ketosis has been related to negative energy balance. The objective of this study was to investigate metabolite fingerprints in the urine of pre-ketotic, ketotic, and post-ketotic cows to identify potential metabolite alterations that can be used in the future to identify susceptible cows for ketosis and metabolic pathways involved in the development of disease. In this study, NMR, DI/LC-MS/MS, and GC-MS-based metabolomics were used to analyze urine samples from 6 cows diagnosed with ketosis and 20 healthy control (CON) cows at -8 and -4 weeks prepartum, the week (+1 to +3) of ketosis diagnosis, and at +4 and +8 weeks after parturition. Univariate and multivariate analyses were used to screen metabolite panels that can identify cows at their pre-ketotic stage. A total of 54, 42, 48, 16, and 31 differential metabolites between the ketotic and CON cows were identified at -8 and -4 weeks prepartum, ketosis week, and at +4, and +8 weeks postpartum, respectively. Variable importance in projection (VIP) plots ranked the most significant differential metabolites, which differentiated ketotic cows from the CON ones. Additionally, several metabolic pathways that are related to ketosis were identified. Moreover, two promising metabolite panels were identified which clearly separated ketotic from CON cows with excellent level of sensitivity and specificity. Overall, multiple urinary metabolite alterations were identified in pre-ketotic, ketotic, and post-ketotic cows. The metabolite panels identified need to be validated in the future in a larger cohort of animals.
Collapse
Affiliation(s)
- Guanshi Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Burim N Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
High levels of fatty acids inhibit β-casein synthesis through suppression of the JAK2/STAT5 and mTOR signaling pathways in mammary epithelial cells of cows with clinical ketosis. J DAIRY RES 2020; 87:212-219. [PMID: 32308163 DOI: 10.1017/s0022029920000175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketosis is a metabolic disease of dairy cows often characterized by high concentrations of ketone bodies and fatty acids, but low milk protein and milk production. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) and the mechanistic target of rapamycin (mTOR) signaling pathways are central for the regulation of milk protein synthesis. The effect of high levels of fatty acids on these pathways and β-casein synthesis are unknown in dairy cows with clinical ketosis. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically-ketotic (n = 15) cows. In addition, bovine mammary epithelial cells (BMEC) were treated with fatty acids, methionine (Met) or prolactin (PRL), respectively. In vivo, the serum concentration of fatty acids was greater (P > 0.05) and the percentage of milk protein (P > 0.05) was lower in cows with clinical ketosis. The JAK2-STAT5 and mTOR signaling pathways were inhibited and the abundance of β-casein was lower in mammary tissue of cows with clinical ketosis (P > 0.05). In vitro, high levels of fatty acids inhibited the JAK2-STAT5 and mTOR signaling pathways (P > 0.05) and further decreased the β-casein synthesis (P > 0.05) in BMEC. Methionine or PRL treatment, as positive regulators, activated the JAK2-STAT5 and mTOR signaling pathways to increase the β-casein synthesis. Importantly, the high concentration of fatty acids attenuated the positive effect of Met or PRL on mTOR, JAK2-STAT5 pathways and the abundance of β-casein (P > 0.05). Overall, these data indicate that the high concentrations of fatty acids that reach the mammary cells during clinical ketosis inhibit mTOR and JAK2-STAT5 signaling pathways, and further suppress β-casein synthesis.
Collapse
|
7
|
Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019; 13:1676-1689. [PMID: 30854998 DOI: 10.1017/s175173111900034x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hyperketonemia (HYK) is one of the most frequent and costly metabolic disorders in high-producing dairy cows and its diagnosis is based on β-hydroxybutyrate (BHB) concentration in blood. In the last 10 years, the number of papers that have dealt with the impact of elevated BHB levels in dairy cattle has increased. Therefore, this paper reviewed the recent literature on BHB concentration in blood and milk, and its relationships with dairy cow health and performance, and farm profitability. Most studies applied the threshold of 1.2 mmol/l of BHB concentration in blood to indicate HYK; several authors considered BHB concentrations between 1.2 and 2.9 mmol/l as subclinical ketosis, and values ⩾3.0 mmol/l as clinical ketosis. Results on HYK frequency (prevalence and incidence) and cow performance varied according to parity and days in milk, being greater in multiparous than in primiparous cows, and in the first 2 weeks of lactation than in later stages. Hyperketonemia has been associated with greater milk fat content, fat-to-protein ratio and energy-corrected milk, and lower protein and urea nitrogen in milk. The relationships with milk yield and somatic cell count are still controversial. In general, HYK impairs health of dairy cows by increasing the risk of the onset of other early lactation diseases, and it negatively affects reproductive performance. The economic cost of HYK is mainly due to impaired reproductive performance and milk loss. From a genetic point of view, results from the literature suggested the feasibility of selecting cows with low susceptibility to HYK. The present review highlights that milk is the most promising matrix to identify HYK, because it is easy to sample and allows a complete screening of the herd through BHB concentration predicted using mid-IR spectroscopy during routine milk recording. Further research is needed to validate accurate and convenient methods to discriminate between cows in risk of HYK and healthy animals in field conditions and to support farmers to achieve an early detection and minimise the economic losses.
Collapse
|
8
|
Viña C, Fouz R, Camino F, Sanjuán ML, Yus E, Diéguez FJ. Study on some risk factors and effects of bovine ketosis on dairy cows from the Galicia region (Spain). J Anim Physiol Anim Nutr (Berl) 2016; 101:835-845. [DOI: 10.1111/jpn.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- C. Viña
- Anatomy and Animal Production Department; Veterinary Faculty of Lugo; Santiago de Compostela University; Lugo Spain
| | | | - F. Camino
- Veterinary Faculty of Lugo; Institute of Food Analysis and Research (Animal Health and Epidemiology Unit); Santiago de Compostela University; Lugo Spain
| | - M. L. Sanjuán
- Veterinary Faculty of Lugo; Institute of Food Analysis and Research (Animal Health and Epidemiology Unit); Santiago de Compostela University; Lugo Spain
| | - E. Yus
- Veterinary Faculty of Lugo; Institute of Food Analysis and Research (Animal Health and Epidemiology Unit); Santiago de Compostela University; Lugo Spain
| | - F. J. Diéguez
- Anatomy and Animal Production Department; Veterinary Faculty of Lugo; Santiago de Compostela University; Lugo Spain
- Veterinary Faculty of Lugo; Institute of Food Analysis and Research (Animal Health and Epidemiology Unit); Santiago de Compostela University; Lugo Spain
| |
Collapse
|