1
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A. Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand. Foods 2023; 12:487. [PMID: 36766016 PMCID: PMC9914209 DOI: 10.3390/foods12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces (T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people.
Collapse
Affiliation(s)
- Seavchou Laut
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Onuma Piasai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sujinda Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Sarwat A, Rauf W, Majeed S, De Boevre M, De Saeger S, Iqbal M. LC-MS/MS based appraisal of multi-mycotoxin co-occurrence in poultry feeds from different regions of Punjab, Pakistan. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:106-122. [PMID: 35227167 DOI: 10.1080/19393210.2022.2037722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins, being a threat to animal and human health, contribute significantly towards economic losses in the poultry sector. A liquid chromatography-mass spectrometry-based study was conducted on poultry feed samples collected from Punjab, Pakistan to evaluate the prevalence, contamination levels, and co-occurrence of multi-mycotoxins across different processed forms of the feed, types of utilities and sampling regions. All samples were found to be contaminated with aflatoxin B1 (AFB1) and fumonisin B1 (FB1). The European Commission (EC) maximum level for AFB1 in complete feedingstuffs in poultry and guidance values for FB1 and zearalenone (ZEN) were exceeded in 73%, 2%, and 14% of the contaminated samples, respectively. The corresponding median values were 39.9 µg/kg, 205 µg/kg, and 34.5 µg/kg. In addition to exceeding contamination levels, a varying co-occurrence of three to fourteen mycotoxins was observed in each of the feed samples that calls for mitigation measures to safeguard the feed and its ingredients.
Collapse
Affiliation(s)
- Asifa Sarwat
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,A & K Pharmaceuticals, 94-A, Punjab Small Industrial Estate, Sargodha Road, Faisalabad, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Saima Majeed
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health,MYTOX-SOUTH®- Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health,MYTOX-SOUTH®- Ghent University, Ghent, Belgium.,Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
4
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
5
|
Nasaruddin N, Jinap S, Samsudin NIP, Kamarulzaman NH, Sanny M. Assessment of multi-mycotoxin contamination throughout the supply chain of maize-based poultry feed from selected regions of Malaysia by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:777-787. [PMID: 35302923 DOI: 10.1080/19440049.2022.2036821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to examine the occurrence of multi-mycotoxin contamination throughout the supply chain of maize-based poultry feed. Different sampling points throughout the feed supply chain were selected from two companies that manufactured the poultry feed. A total of 51 samples, consisting of grain maize and maize-based poultry feeds, were collected. The samples were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine the occurrence of multi-mycotoxin. The results revealed that 100% of samples throughout the maize-based poultry feed supply chain were spoiled with more than one mycotoxin. Fumonisin B1 (8.02-1,220 µg/kg) and fumonisin B2 (11.1-1,109 µg/kg) were the main mycotoxins detected at all sampling points throughout the feed supply chain. Zearalenone (ZEA) (6.63-7.50 µg/kg) was also detected in 11.7% (n = 6) (out of a total of 51) samples. As the supply chain progresses, a reduction in mycotoxin contamination was observed. Aflatoxins, ochratoxin A (OTA), deoxynivalenol (DON), HT-2, and T-2 toxin were not detected. The levels of mycotoxins detected throughout the supply chain were below the international regulatory limits, thus indicating the low risk of exposure to mycotoxins in maize-based poultry feed in Malaysia. Nevertheless, due to the presence of multiple ingredients in most food and feed, efforts to understand and address challenges associated with mycotoxins throughout the entire supply chain need to be more holistic to protect public health.
Collapse
Affiliation(s)
- Norafidah Nasaruddin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nitty Hirawaty Kamarulzaman
- Laboratory of Halal Policy and Management, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor darul Ehsan, Malaysia
| | - Maimunah Sanny
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
7
|
Zhang J, Zheng Y, Tao H, Liu J, Zhao P, Yang F, Lv Z, Wang J. Effects of Bacillus subtilis ZJ-2019-1 on Zearalenone Toxicosis in Female Gilts. Toxins (Basel) 2021; 13:toxins13110788. [PMID: 34822572 PMCID: PMC8617607 DOI: 10.3390/toxins13110788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this research was to investigate the toxicity of zearalenone (ZEN) on the growth performance, genital organs, serum hormones, biomarkers, and histopathological changes of female gilts and to evaluate the efficacy of Bacillus subtilis ZJ-2019-1 in alleviating ZEN toxicosis in gilts. Twenty-four female gilts were randomly allocated to four groups with six replicates per group and one gilt per replicate, fed on four feeds prepared previously, which were basic diet (control group, C group), ZEN diet (Z group), Zlb diet (Zlb group) containing B. subtilis ZJ-2019-1 in liquid form, and Zdb diet (Zdb group) containing B. subtilis ZJ-2019-1 in dehydrated form. The results showed that the vulva size and relative weight of reproductive organs had no significant difference in the control group, Zlb group, and Zdb group, but were significantly lower than in the Z group (p < 0.05); the relative weight of the liver was lower in the C group, Zlb group, and Zbd group than in the Z group (0.05 < p < 0.1). The concentration of serum glutamate dehydrogenase (GLDH) was lower, but follicle-stimulating hormone (FSH) was higher in the Z group, Zlb group, and Zdb group than in the Z group (0.05 < p < 0.1). Additionally, serum luteinizing hormone (LH) concentration had no significant difference in the C group, Zlb group, and Zdb group but was significantly lower than in the Z group (p < 0.05); estradiol (E2) was significantly lower in the Zlb group and Zdb group than that in C group, but significantly higher than that in Z group (p < 0.05); PRL was significantly higher in the Zlb group and Zdb group than in the C group, but was significantly lower than in Z group (p < 0.05). ZEN and its reduced metabolites were measured in biological samples after enzymatic hydrolysis of the conjugated forms. The concentration of serum ZEN and its metabolite, α-zeralenol (α-ZOL), had no significant difference in Zlb, Zdb, and control groups but was significantly lower than in the Z group (p < 0.05); urine ZEN and its metabolites, α-ZOL and β-zeralenol (β-ZOL), had no significant difference in Zlb, Zdb, and control groups but was significantly lower than in the Z group (p < 0.05). Cell damages were observed in the liver, uterus, and ovary of gilts in the Z group and alleviated in Zlb and Zdb groups, but the loss of oocytes was irreversible in the ovary. The ZEN-contaminated diet caused serious changes in female hormones and brought harm to the livers and reproductive organs, but B. subtilis ZJ-2019-1 could naturally remove the ZEN significantly, which ameliorated the reproductive impairment in gilts caused by ZEN. The addition of B. subtilis ZJ-2019-1 to ZEN-contaminated feeds could ameliorate the toxic effects effectively, regardless of liquid or dry culture. Therefore, the B. subtilis ZJ-2019-1 strain has great potential industrial applications.
Collapse
Affiliation(s)
- Junnan Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Yunduo Zheng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Peng Zhao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Fan Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
| | - Zonghao Lv
- Animal Husbandry Department, Agricultural Science Research Institute, Huaihua 418000, China;
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (J.Z.); (Y.Z.); (H.T.); (J.L.); (P.Z.); (F.Y.)
- Correspondence: ; Tel.: +86-010-8210-6070
| |
Collapse
|
8
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
9
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
10
|
Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins (Basel) 2020; 12:toxins12060377. [PMID: 32517357 PMCID: PMC7354539 DOI: 10.3390/toxins12060377] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
One of the concerns when using grain ingredients in feed formulation for livestock and poultry diets is mycotoxin contamination. Aflatoxin, fumonisin, ochratoxin, trichothecene (deoxynivalenol, T-2 and HT-2) and zearalenone (ZEN) are mycotoxins that have been frequently reported in animal feed. ZEN, which has raised additional concern due to its estrogenic response in animals, is mainly produced by Fusarium graminearum (F. graminearum), F. culmorum, F. cerealis, F. equiseti, F. crookwellense and F. semitectums, and often co-occurs with deoxynivalenol in grains. The commonly elaborated derivatives of ZEN are α-zearalenol, β-zearalenol, zearalanone, α-zearalanol, and β-zearalanol. Other modified and masked forms of ZEN (including the extractable conjugated and non-extractable bound derivatives of ZEN) have also been quantified. In this review, common dose of ZEN in animal feed was summarized. The absorption rate, distribution (“carry-over”), major metabolites, toxicity and estrogenicity of ZEN related to poultry, swine and ruminants are discussed.
Collapse
|
11
|
Nualkaw K, Poapolathep S, Zhang Z, Zhang Q, Giorgi M, Li P, Logrieco AF, Poapolathep A. Simultaneous Determination of Multiple Mycotoxins in Swine, Poultry and Dairy Feeds Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. Toxins (Basel) 2020; 12:253. [PMID: 32294956 PMCID: PMC7232461 DOI: 10.3390/toxins12040253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
A reliable, sensitive and accurate multiple mycotoxin method was developed for the simultaneous determination of 17 mycotoxins in swine, poultry and dairy feeds using stable isotope dilution (13C-ISTD) and (ultra)-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A simple QuEChERS-based method (quick, easy, cheap, effective, rugged and safe) was developed consisting of soaking with a solution of 1% formic acid followed by extraction with acetonitrile, clean-up with C18 sorbent and finally adding 13C-ISTD before the UHPLC-MS/MS analysis. The chromatographic condition was optimized for separation and detection of the 17 mycotoxins using gradient elution. The method's performance complied with the SANTE/11813/2017 standard and had mean recovery accuracies in the range 70%-120% and precision testing of % relative standard deviation (RSD) £ 20%. The limit of detection and limit of quantification values ranged from 0.25 to 40.0 ng/g and 0.5 to 100.0 ng/g, respectively. Finally, the method was applied to analyze feed samples, with the results showing that fumonisins, zearalenone, aflatoxin B1 and deoxynivalenol were the most prevalent mycotoxins contaminating the feed samples.
Collapse
Affiliation(s)
- Kraiwut Nualkaw
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy;
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | | | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| |
Collapse
|
12
|
Sun C, Liao X, Huang P, Shan G, Ma X, Fu L, Zhou L, Kong W. A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chem 2020; 315:126289. [PMID: 32014670 DOI: 10.1016/j.foodchem.2020.126289] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Trace residue of mycotoxins in complex medicinal and edible food matrices has brought huge challenges for the development of ultrasensitive analytical methods. Here, a green electrochemical immunosensor for the ultrasensitive detection of ochratoxin A (OTA) was fabricated by self-assembling a compact 2-mercaptoacetic (TGA) monolayer on the surface of the working Au electrode to form the Au/TGA/bovine serum aibumin (BSA)-OTA/anti-OTA monoclonal antibody composite probes for selective and ultra-sensitive detection of OTA based on indirect competitive principle and differential pulse voltammetry analysis. The electrochemical impedance spectroscopy and cyclic voltammetry methods were introduced to characterize the assemble situation of the TGA-modified Au electrode and optimize some critical parameters for the green electrochemical immunoseonsor. Under the optimal conditions, the developed immunosensor exhibited much lower limit of detection (0.08 ng/mL) in the range of 0.1-1.0 ng/mL for OTA compared with other direct or disposable electrochemical immunosensors. Real application in the spiked malt samples verified high accuracy with no matrix interferences of the proposed immunoseonsor. This is a meaningful study on a self-assembled electrochemical immunoseonsor for ultra-sensitive and rapid detection of OTA in malt samples, which suggested a general simple-to-use sensing platform and prospect as an economical and green tool for ultra-sensitive detection of much more trace-level of toxic small molecules in other complex matrices to ensure their quality and safety.
Collapse
Affiliation(s)
- Chaonan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pinxuan Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lizhu Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
13
|
Juan C, Oueslati S, Mañes J, Berrada H. Multimycotoxin Determination in Tunisian Farm Animal Feed. J Food Sci 2019; 84:3885-3893. [PMID: 31762027 DOI: 10.1111/1750-3841.14948] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 01/30/2023]
Abstract
Mycotoxins presence was evaluated in animal feed marketed in Tunisia for the first time ever. A QuEChERS method was performed to analyze the natural copresence of 22 mycotoxins (enniatins, beauvericin, ochratoxin A, aflatoxins, alternariol monomethyl ether, alternariol, tentoxin, zearalenone, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, neosolaniol, diacetoxyscirpenol, T-2 toxin, and HT-2 toxin) in 122 Tunisian marketed feed samples, intended for poultry (n = 43), cattle (n = 35), rabbit (n = 12), sheep (n = 16), and horse (n = 16). Analytes detection and quantification were done using both liquid chromatography and gas chromatography coupled to tandem mass spectrometry. The analytical method showed good linearity (R > 0.996) and sensitivity, the limits of quantification ranged from 0.1 ng/g (enniatin A1) to 225 ng/g (3-acetyldeoxynivalenol). Eighty-five percent of the analyzed samples were positive. Poultry (n = 43) and rabbit (n = 12) feed samples were the most contaminated. Enniatin B was the most prevalent mycotoxin with values ranged between 0.5 ng/g for horse feed and 40 ng/g for poultry feed, followed by deoxynivalenol detected from 16 ng/g in cattle feed to 250 ng/g in poultry feed. None exceeded the limits set by EU recommendations for animal feed. Mycotoxins co-occurrence was observed at most by five different mycotoxins (26%) and up to eight mycotoxins was recorded in 5% of samples. Furthermore, a relatively high copresence rate of different fusariotoxins was registered. Even if no toxicological concern was clearly revealed, the contamination is a real fact and will probably present influence on meat production and on food safety.
Collapse
Affiliation(s)
- Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Univ. of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain
| | - Souheib Oueslati
- Laboratoire Matériaux, Molécules et applications. Inst. Préparatoire aux Etudes Scientifiques et Techniques, BP 51, La Marsa, 2070, Tunisia.,Regional Field Crop Research Center of Beja (CRRGC), Route Tunis Km 5, 9000, Béja, Tunisia
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Univ. of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain
| | - Houda Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Univ. of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain
| |
Collapse
|
14
|
Analysis of Mycotoxins Contamination in Poultry Feeds Manufactured in Selected Provinces of South Africa Using UHPLC-MS/MS. Toxins (Basel) 2019; 11:toxins11080452. [PMID: 31382387 PMCID: PMC6722855 DOI: 10.3390/toxins11080452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/22/2023] Open
Abstract
A total of 105 different types of poultry feed samples from South Africa were simultaneously analysed for the presence of 16 mycotoxins using ultra-high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The data revealed the presence of 16 mycotoxins in the various poultry feed samples. Fumonisin B1 (FB1) was the most dominant recovered from 100% of samples analysed at concentrations ranging between 38.7 and 7125.3 µg/kg. This was followed by zearalenone (ZEN) (range: 0.1–429 µg/kg) and deoxynivalenol (DON) (range: 2.5–154 µg/kg). Samples were also found to be contaminated with fumonisin B2 (FB2) (range: 0.7–125.1 µg/kg), fumonisin B3 (FB3) (range: 0.1–125.1 µg/kg), α-zearalenol (α-ZEL) (range: 0.6–20 µg/kg ), β-zearalenol (β-ZEL) (range: 0.2–22.1 µg/kg), 3-acetyldeoxynivalenol (3-ADON) (range: 0.1–12.9 µg/kg) and 15-acetyldeoxynivalenol (15-ADON) (range: 1.7–41.9 µg/kg). Alternaria mycotoxin, i.e., Alternariol monomethyl ether (AME) was recovered in 100% of samples at concentrations that ranged from 0.3–155.5 µg/kg. Aflatoxins (AFs) had an incidence rate of 92% with generally low concentration levels ranging from 0.1–3.7 µg/kg. Apart from these metabolites, 2 type A trichothecenes (THs), i.e., HT-2 toxin (HT-2) (range: 0.2–5.9 µg/kg) and T-2 toxin (T-2) (range: 0.1–15.3 µg/kg) were also detected. Mycotoxin contamination in South African poultry feed constitutes a concern as correspondingly high contamination levels, such as those observed herein are likely to affect birds, which can be accompanied by severe health implications, thus compromising animal productivity in the country. Such exposures, primarily to more than one mycotoxin concurrently, may elicit noticeable synergistic and or additive effects on poultry birds.
Collapse
|
15
|
Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins (Basel) 2019; 11:toxins11050290. [PMID: 31121952 PMCID: PMC6563184 DOI: 10.3390/toxins11050290] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Today, we have been witnessing a steady tendency in the increase of global demand for maize, wheat, soybeans, and their products due to the steady growth and strengthening of the livestock industry. Thus, animal feed safety has gradually become more important, with mycotoxins representing one of the most significant hazards. Mycotoxins comprise different classes of secondary metabolites of molds. With regard to animal feed, aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent ones. In this review, several constraints posed by these contaminants at economical and commercial levels will be discussed, along with the legislation established in the European Union to restrict mycotoxins levels in animal feed. In addition, the occurrence of legislated mycotoxins in raw materials and their by-products for the feeds of interest, as well as in the feeds, will be reviewed. Finally, an overview of the different sample pretreatment and detection techniques reported for mycotoxin analysis will be presented, the main weaknesses of current methods will be highlighted.
Collapse
|
16
|
Lauwers M, Croubels S, Letor B, Gougoulias C, Devreese M. Biomarkers for Exposure as A Tool for Efficacy Testing of A Mycotoxin Detoxifier in Broiler Chickens and Pigs. Toxins (Basel) 2019; 11:E187. [PMID: 30925814 PMCID: PMC6520943 DOI: 10.3390/toxins11040187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/20/2022] Open
Abstract
Applying post-harvest control measures such as adding mycotoxin detoxifying agents is a frequently-used mitigation strategy for mycotoxins. EFSA states that the efficacy of these detoxifiers needs to be tested using specific biomarkers for exposure. However, the proposed biomarkers for exposure are not further optimized for specific target species. Hence, the goal of this study was a) to evaluate the most suitable biomarkers for deoxynivalenol (DON) and zearalenone (ZEN) in porcine plasma, urine and feces; and DON, aflatoxin B1 (AFB1) and ochratoxin A (OTA) in plasma and excreta of broiler chickens and b) to determine the efficacy of a candidate detoxifier, as a proof-of-concept study. Therefore, a mixture of mycotoxins was administered as a single oral bolus with or without detoxifying agent. In accordance with literature AFB1, OTA, and DON-sulphate (DON-S) proved optimal biomarkers in broilers plasma and excreta whereas, in pigs DON-glucuronide (DON-GlcA) and ZEN-glucuronide (ZEN-GlcA) proved the optimal biomarkers in plasma, DON and ZEN-GlcA in urine and, ZEN in feces. A statistically significant reduction was seen between control and treatment group for both AFB1 and DON in broiler plasma, under administration of the mycotoxin blend and detoxifier dose studied suggesting thus, beneficial bioactivity.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Ben Letor
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | | | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
17
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
18
|
Mochamad L, Hermanto B. High-performance liquid chromatography ultraviolet-photodiode array detection method for aflatoxin B 1 in cattle feed supplements. Vet World 2017; 10:932-938. [PMID: 28919686 PMCID: PMC5591482 DOI: 10.14202/vetworld.2017.932-938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of the current study is to determine the concentration of aflatoxin B1 using high-performance liquid chromatography (HPLC) with a photodiode array (PDA) detector. MATERIALS AND METHODS Aflatoxin B1 certified reference grade from Trilogy Analytical Laboratory dissolved acetonitrile (ACN) at 10 µg/mL was using standard assessment. HPLC instruments such as ultraviolet-PDA detector used a Shimadzu LC-6AD pump with DGU-20A5 degasser, communication module-20A, and PDA detector SPD-M20A with FRC-10A fraction collector. The HPLC was set isocratic method at 354 nm with a reverse-phase ODS C18 column (LiChrospher® 100 RP-18; diameter, 5 µm) under a 20°C controlled column chamber. Rheodyne® sample loops were performed in 20 µL capacities. The mobile phase was performed at fraction 63:26:11 H2O: methanol:ACN at pH 6.8. A total of 1 kg of feed contained 10% bread crumbs and 30% concentrated, 40% forage, and 20% soybean dregs were using commercials samples. Samples were extracted by ACN and separated with solid phase extraction ODS 1 mL than elution with mobile phase to collect at drying samples performed. The samples were ready to use after added 1 mL mobile phase than injected into the system of HPLC. RESULTS We found that the retention time of aflatoxin B1 was approximately 10.858 min. Linearity of 0.01-0.08 µg/mL aflatoxin B1 dissolved in mobile phase was obtained at R2=0.9. These results demonstrate that these methods can be used to analyze aflatoxin B1 and gain 89-99% recovery. The limit of detection of this assay was obtained at 3.5 × 10-6 µg/mL. CONCLUSION This method was easy to apply and suitable to analyzing at small concentrations of aflatoxin B1 in formulated product of feed cattle.
Collapse
Affiliation(s)
- Lazuardi Mochamad
- Department of Basic Science, Veterinary Pharmacy Subdivision, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Bambang Hermanto
- Department of Pharmacology, Medical Faculty Airlangga University, Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Indonesia
| |
Collapse
|
19
|
Pralatnet S, Poapolathep S, Giorgi M, Imsilp K, Kumagai S, Poapolathep A. Survey of Deoxynivalenol and Aflatoxin B1 in Instant Noodles and Bread Consumed in Thailand by Using Liquid Chromatography-Tandem Mass Spectrometry. J Food Prot 2016; 79:1269-72. [PMID: 27357050 DOI: 10.4315/0362-028x.jfp-15-510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One hundred wheat product samples (50 instant noodle samples and 50 bread samples) were collected from supermarkets in Bangkok, Thailand. Deoxynivalenol (DON) and aflatoxin B1 (AFB1) contamination in these products was analyzed using a validated liquid chromatography-tandem mass spectrometry method. The limit of quantification values of DON and AFB1 in the instant noodles and bread were 2 and 1 ng g(-1), respectively. The survey found that DON was quantifiable in 40% of collected samples, in 2% of noodles (0.089 μg g(-1)), and in 78% of breads (0.004 to 0.331 μg g(-1)). AFB1 was below the limit of quantification of the method in all of the tested samples. The results suggest that the risk of DON exposure via noodles and breads is very low in urban areas of Thailand. No risk can be attributable to AFB1 exposure in the same food matrices, but further studies with a larger sample size are needed to confirm these data.
Collapse
Affiliation(s)
- Sasithorn Pralatnet
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, 56122 Pisa, Italy
| | - Kanjana Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Susumu Kumagai
- Food Safety Commission, Minato-Ku, Tokyo 107-6122, Japan
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|