1
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
2
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
3
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Riondato F, Comazzi S. Flow Cytometry in the Diagnosis of Canine B-Cell Lymphoma. Front Vet Sci 2021; 8:600986. [PMID: 33869314 PMCID: PMC8044988 DOI: 10.3389/fvets.2021.600986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
B cell lymphoma (BCL) is a heterogeneous group of lymphoid malignancies which comprise the majority of canine lymphomas. Diffuse large B cell lymphoma is the most common lymphoma subtype in dogs but other subtypes (e.g., marginal zone lymphoma, follicular lymphoma, mantle cell lymphoma, and others) have been described. This review aims to explore the use of flow cytometry to refine the diagnosis of canine BCL. Particular emphasis will be given to the possible identification of peculiar immunotypes, putative prognostic markers, staging and minimal residual disease.
Collapse
Affiliation(s)
- Fulvio Riondato
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Italy
| | - Stefano Comazzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
5
|
Tsuji S, Kohyanagi N, Mizuno T, Ohama T, Sato K. Perphenazine exerts antitumor effects on HUT78 cells through Akt dephosphorylation by protein phosphatase 2A. Oncol Lett 2020; 21:113. [PMID: 33376545 PMCID: PMC7751355 DOI: 10.3892/ol.2020.12374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Sezary syndrome is a rare type of non-Hodgkin lymphoma. Protein phosphatase 2A (PP2A) is an important tumor suppressor whose activity is widely inhibited in a variety of tumors. Recently, reactivation of PP2A has attracted increasing attention as a promising approach for cancer therapy. Phenothiazine anti-psychotic perphenazine (PPZ) exerts antitumor effects by reactivating PP2A. The present study investigated the molecular mechanism underling the antitumor effects of PPZ in the neuroblastoma rat sarcoma oncogene (NRAS)-mutated Sezary syndrome cell line, HUT78. The results of the present study demonstrated that PPZ induced the dephosphorylation of Akt and ERK1/2, and triggered apoptosis in HUT78 cells. In addition, a PP2A inhibitor blocked the PPZ-mediated dephosphorylation of Akt but did not affect that of ERK1/2. The pharmacological inhibition of Akt and ERK1/2 signaling revealed that Akt activity serves an important role in the survival of HUT78 cells. The present data suggested that suppressing Akt activity by PP2A activation may be an attractive antitumor strategy for NRAS-mutated Sezary syndrome.
Collapse
Affiliation(s)
- Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Mizuno
- The Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
6
|
Whole genome sequencing analysis of high confidence variants of B-cell lymphoma in Canis familiaris. PLoS One 2020; 15:e0238183. [PMID: 32857815 PMCID: PMC7454977 DOI: 10.1371/journal.pone.0238183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Lymphoma (lymphosarcoma) is the second most frequent cancer in dogs and is clinically comparable to human non-Hodgkin lymphoma. Factors affecting canine lymphoma progression are unknown and complex, but there is evidence that genetic mutations play an important role. We employed Next Gen DNA sequencing of six dogs with multicentric B-cell lymphoma undergoing CHOP chemotherapy to identify genetic variations potentially impacting response. Paired samples from non-neoplastic tissue (blood mononuclear cells) and lymphoma were collected at the time of diagnosis. Cases with progression free survival above the median of 231 days were grouped as 'good' responders and cases below the median were categorized as 'poor' responders. The average number of variants found was 17,138 per case. The variants were filtered to examine those with predicted moderate or high impacts. Many of the genes with variants had human orthologs with links to cancer, but the majority of variants were not previously reported in canine or human lymphoma. Seven genes had variants found in the cancers of at least two 'poor' responders but in no 'good' responders: ATRNL1, BAIAP2L2, ZNF384, ST6GALNAC5, ENSCAFG00000030179 (human ortholog: riboflavin kinase RFK), ENSCAFG00000029320, and ENSCAFG00000007370 (human ortholog: immunoglobin IGKV4-1). Two genes had variants found in the cancers of at least two 'good' responders but in no 'poor' responders: COX18 and ENSCAFG00000030512. ENSCAFG00000030512 has no reported orthologue in any other species. The role of these mutations in the progression of canine lymphoma requires further functional analyses and larger scale study.
Collapse
|
7
|
Otręba M, Kośmider L. In vitro anticancer activity of fluphenazine, perphenazine and prochlorperazine. A review. J Appl Toxicol 2020; 41:82-94. [PMID: 32852120 DOI: 10.1002/jat.4046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Drug repositioning is an approach that could accelerate the clinical use of compounds in different diseases. The goal is to take advantage of the fact that approved drugs have been tested on humans and detailed information is available on their pharmacology, toxicity and formulation. It can significantly reduce the costs and time needed to implement necessary therapies on the market. In recent years, phenothiazines are being tested for cancer, viral, bacterial, fungal and other diseases. Most research focuses on chlorpromazine as a model drug in this class, but other drugs such as fluphenazine, perphenazine and prochlorperazine have been proven to inhibit the viability of different cancer cell lines. In this study, we performed an extensive literature search to find and summarize all papers on the chosen phenothiazines and their potential in treating different types of cancerin vitro for further animal/clinical trials. Fluphenazine, perphenazine and prochlorperazine possess anticancer activity towards different types of human cancer. The antitumor activity is mainly mediated by an effect of the drugs on the cell cycle, proliferation or apoptosis. Possible molecular targets of phenothiazine derivatives are the drug's efflux pumps (ABCB1 and P-glycoprotein) and two parallel pathways (AKT and Wnt) regulated by the D2 receptor antagonists. The drugs have the potential to reduce the viability of human cancer cell lines, fragment the DNA, stimulate apoptosis, inhibit cell migration and invasiveness as well as impair the production of reactive oxygen species. In addition, due to the sedative and antiemetic properties antipsychotics can be used as an adjuvant for the treatment of chemotherapy side effects.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| |
Collapse
|
8
|
Borga C, Frazer JK. Zebrafish MYC-induced leukemia models: unique in vivo systems to study B and T cell acute lymphoblastic leukemia. Int J Hematol Oncol 2019; 8:IJH12. [PMID: 30863529 PMCID: PMC6410022 DOI: 10.2217/ijh-2018-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chiara Borga
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John Kimble Frazer
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Środa-Pomianek K, Michalak K, Świątek P, Poła A, Palko-Łabuz A, Wesołowska O. Increased lipid peroxidation, apoptosis and selective cytotoxicity in colon cancer cell line LoVo and its doxorubicin-resistant subline LoVo/Dx in the presence of newly synthesized phenothiazine derivatives. Biomed Pharmacother 2018; 106:624-636. [PMID: 29990852 DOI: 10.1016/j.biopha.2018.06.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Cancer cells often develop the resistance to pro-apoptotic signaling that makes them invulnerable to conventional treatment. Therapeutic strategies that make cancer cells enter the path of apoptosis are desirable due to the avoidance of inflammatory reaction that usually accompanies necrosis. In the present study phenothiazines (fluphenazine and four recently synthesized derivatives) were investigated in order to identify compounds with a potent anticancer activity. Since phenothiazines are known as multidrug resistance modulators the sensitive human colorectal adenocarcinoma cell line (LoVo) and its doxorubicin-resistant, ABCB1 overexpressing, subline (LoVo/Dx) have been employed as a model system. In studied cancer cells cytotoxic effect of the phenothiazine derivatives was accompanied by apoptosis and autophagy induction as well as by the increase of cellular lipid peroxidation and intracellular reactive oxygen species generation. Molecular modelling revealed that reactivity of phenothazines (manifested by their low energy gap) but not lipophilicity was positively correlated with their anticancer potency, pro-oxidant properties and apoptosis induction ability. Additionally, some of the studied compounds turned out to be more potent cytotoxic and pro-apoptotic agents in doxorubicin-resistant (LoVo/Dx) cells than in sensitive ones (LoVo). The hypothesis was assumed that studied phenothiazine derivatives induced apoptotic cell death by increasing the production of reactive oxygen species.
Collapse
Affiliation(s)
- Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Piotr Świątek
- Department of Drug Chemistry, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| | - Andrzej Poła
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| |
Collapse
|