1
|
Bazjert J, Jawor P, Pisarek M, Baran R, Jachymek W, Stefaniak T. Local and systemic humoral immune responses to Histophilus somni recombinant antigens administered intranasally and subcutaneously to dairy calves. Sci Rep 2024; 14:27567. [PMID: 39528575 PMCID: PMC11555116 DOI: 10.1038/s41598-024-78605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Bovine respiratory disease (BRD) causes significant economic losses in dairy calves. Induction of an early immune response via parenteral vaccination is complicated by the interference of colostral immunity. In this study, we investigated early immunization against selected conserved bacterial antigens. Calves were vaccinated twice intranasally and then subcutaneously with Histophilus somni recombinant proteins (rOMP40 or rHsp60) mixed with one of two adjuvants: CpG ODN2007 or MPLA. The control group (Con) was treated with PBS. The first immunization was done between 24 and 48 h of life and then twice in two weeks intervals. Blood, nasal, and saliva secretion samples were collected directly before vaccination (S1-S3) and then on 42-44 (S4) and 59-61 (S5) day of life. Antibodies (IgG1/IgG2/IgM/IgA in serum; IgG1/IgA in secretions) against both vaccine antigens were quantified in all samples. Intranasal and subcutaneous vaccinations using the described formulas did not increase antibody reactivity against the tested proteins. The reactivity of serum IgG1, IgM, and IgA anti-rOMP40 antibodies was significantly higher in S1 in all groups than that in the other samplings (p˂0.01). Significant differences in the reactivity of serum anti-rOMP40 antibodies between groups were identified in S1 (IgA reactivity was higher in the CpG vs. MPLA group; p < 0.05), S4 (IgM reactivity was higher in Con vs. CpG group; p < 0.05), and S5 (IgG1 reactivity was higher in MPLA vs. Con group; p < 0.05). The lack of consistent changes in antibodies after immunization (S4 and S5) hinders the drawing of conclusions regarding the effect of immunization on antibody reactivity. In the future, establishing a proper immunization window and adjuvants for nasal vaccines against bacterial pathogens causing BRD in calves remains to be determined.
Collapse
Affiliation(s)
- Joanna Bazjert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, Wrocław, 50-375, Poland.
| | - Paulina Jawor
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, Wrocław, 50-375, Poland
| | - Maciej Pisarek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, Wrocław, 50-375, Poland
| | - Rafał Baran
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, Wrocław, 50-375, Poland
| | - Wojciech Jachymek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Rudolfa Weigla 12 Str, Wrocław, 53-114, Poland
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, Wrocław, 50-375, Poland
| |
Collapse
|
2
|
Fegan JE, Waeckerlin RC, Tesfaw L, Islam EA, Deresse G, Dufera D, Assefa E, Woldemedhin W, Legesse A, Akalu M, Bayissa B, Nguyen QH, Ng D, Ahn SK, Schryvers AB, Tefera TA, Moraes TF, Gray-Owen SD. Developing a PmSLP3-based vaccine formulation that provides robust long-lasting protection against hemorrhagic septicemia-causing serogroup B and E strains of Pasteurella multocida in cattle. Front Immunol 2024; 15:1392681. [PMID: 38835751 PMCID: PMC11148319 DOI: 10.3389/fimmu.2024.1392681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Background Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.
Collapse
Affiliation(s)
- Jamie E Fegan
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Regula C Waeckerlin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liyuwork Tesfaw
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Epshita A Islam
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Getaw Deresse
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Dawit Dufera
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Eyob Assefa
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Wubet Woldemedhin
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Abinet Legesse
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Mirtneh Akalu
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Berecha Bayissa
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Quynh Huong Nguyen
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Takele A Tefera
- Department of Veterinary Bacteriology, National Veterinary Institute, Bishoftu/Debre Zeyit, Ethiopia
| | - Trevor F Moraes
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. Material and Methods The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. Results Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. Conclusion Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
4
|
Development of ELISA-based diagnostic methods for the detection of haemorrhagic septicaemia in animals. J Microbiol Methods 2023; 204:106652. [PMID: 36503053 DOI: 10.1016/j.mimet.2022.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Haemorrhagic septicaemia (HS) is an acute infection of cattle and buffaloes caused by the B:2 serotype of Pasteurella multocida. This disease is highly endemic in South Asia. In some peracute cases, there is 100% mortality in infected animals within a few hours of infection. Therefore, timely diagnosis of infection may contribute to its treatment and control to minimize economic losses. The current work reported the development of ELISA-based assays for the detection of anti-P. multocida antibodies and pathogen i.e. P. multocida. Owing to high immunogenicity, membrane proteins (MPs) extracted from local isolates of P. multocida serotype B:2 (PM1, PM2, and PM3) were employed as a potential diagnostic antigen for the development of indirect ELISA (i-ELISA) to detect HS antibodies in animals. MPs extracted from PM1, PM2 and PM3 isolates showed very low heterogeneity; hence MPs from the PM3 isolate were selected for the development of i-ELISA. The concentration of MPs (as coating antigen) of 3.13 μg/well and test sera dilution 1:100 was found to be optimal to perform i-ELISA. The developed method was validated through the detection of anti-P. multocida antibodies in sera of mice, immunized with MPs and formalin killed cells from the three local isolates (PM1, PM2 and PM3) of P. multocida. The significantly higher antibody titer in immunized mice was determined compared to unimmunized mice with the cut off value of 0.139. To detect P. multocida directly from the blood of infected animals, whole cell-based ELISA (cb-ELISA) assay was developed. A better detection signal was observed in the assay where bacterial cells were directly adsorbed on plate wells as compared to poly L-lysine (PLL) assisted attachment at a cell concentration of 106 CFU and 107 CFU respectively. The developed assays can be scaled up and potentially be used for the rapid detection of HS antibodies to gauge the immune status of the animal as well as vaccination efficacy and pathogen detection.
Collapse
|
5
|
Apinda N, Yao Y, Zhang Y, Reddy VRAP, Chang P, Nair V, Sthitmatee N. CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites. Vaccines (Basel) 2022; 10:vaccines10050686. [PMID: 35632442 PMCID: PMC9147145 DOI: 10.3390/vaccines10050686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox system, have been employed in the present study to show that two new sites at UL55-LORF11 and UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a bivalent vaccine candidate with the potential of protecting ducks simultaneously against major viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5 loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus, confirming that the insertion of the foreign gene into these did not have any detrimental effects on DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way to introduce other antigens into the DEV genome for multivalent vector.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Yaoyao Zhang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | | | - Pengxiang Chang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
6
|
Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines (Basel) 2022; 10:vaccines10020315. [PMID: 35214771 PMCID: PMC8880277 DOI: 10.3390/vaccines10020315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023] Open
Abstract
Hemorrhagic septicemia (HS) caused by Pasteurella multocida B:2 and E:2 is among the fatal bacterial diseases in cattle and buffaloes that are economically valuable in Asian and African countries. The current work aims to study the prevalence of HS among buffaloes, cattle, sheep, and goats in 41 countries in 2005–2019. The data analysis revealed that 74.4% of the total infection rate in the world was distributed among cattle, followed by buffaloes (13.1%). The mortality of HS among cattle and buffaloes increased in 2017–2019 compared to the period between 2014 and 2016. The best measure to control the disease is through vaccination programs. Current commercial vaccines, including live-attenuated vaccines and inactivated vaccines, have some shortcomings and undesirable effects. Virus-like particles (VLPs) have more potential as a vaccine platform due to their unique properties to enhance immune response and the ability to use them as a platform for foreign antigens against infectious diseases. VLPs-based vaccines are among the new-generation subunit vaccine approaches that have been licensed for the human and veterinary fields. However, most studies are still in the late stages of vaccine evaluation.
Collapse
|
7
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
8
|
Muenthaisong A, Rittipornlertrak A, Nambooppha B, Tankaew P, Varinrak T, Pumpuang M, Muangthai K, Atthikanyaphak K, Singhla T, Pringproa K, Punyapornwithaya V, Sawada T, Sthitmatee N. Immune response in dairy cattle against combined foot and mouth disease and haemorrhagic septicemia vaccine under field conditions. BMC Vet Res 2021; 17:186. [PMID: 33952269 PMCID: PMC8097834 DOI: 10.1186/s12917-021-02889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Foot-and-mouth disease (FMD) and Haemorrhagic septicemia (HS) are two important diseases that are known to have caused significant economic losses to the cattle industry. Accordingly, vaccinations have been recognized as an efficient method to control and prevent both of the above-mentioned diseases. This study aimed to determine the immune response to FMD virus antigens and the recombinant outer membrane protein of HS (rOmpH) of Pasteurella multocida in cattle administered as a combination vaccine and compare antibody titers with the two vaccines given independently, under field conditions. Dairy cattle were divided into three groups. Each group was immunized with different vaccine types according to the vaccination program employed in this study. Antibody responses were determined by indirect ELISA, liquid phase blocking ELISA (LPB-ELISA) and viral neutralization test (VNT). Furthermore, the cellular immune responses were measured by lymphocyte proliferation assay (LPA). Results The overall antibody titers to HS and FMDV were above cut-off values for the combined FMD-HS vaccine in this study.The mean antibody titer against HS after the first immunization in the combined FMD-HS vaccine groups was higher than in the HS vaccine groups. However, no statistically significant differences (p > 0.05) were observed between groups. Likewise, the antibody titer to the FMDV serotypes O/TAI/189/87 and Asia 1/TAI/85 determined by LPB-ELISA in the combined vaccine were not statistically significantly different when compared to the FMD vaccine groups. However, the mean VNT antibody titer of combined vaccine against serotype O was significantly higher than the VN titer of FMD vaccine groups (p < 0.05). Moreover, the LPA results showed that all vaccinated groups displayed significantly higher than the negative control (p < 0.05). Nevertheless, no differences in the lymphocyte responses were observed in comparisons between the groups (p > 0.05). Conclusions The combined FMD-HS vaccine formulated in this study could result in high both antibody and cellular immune responses without antigenic competition. Therefore, the combined FMD-HS vaccine can serve as an alternative vaccine against both HS and FMD in dairy cattle under field conditions.
Collapse
Affiliation(s)
- Anucha Muenthaisong
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Amarin Rittipornlertrak
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Pallop Tankaew
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Thanya Varinrak
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Marutpong Pumpuang
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Korkiat Muangthai
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Kheemchompu Atthikanyaphak
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Tawatchai Singhla
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Takuo Sawada
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, 180-8602, Musashino, Tokyo, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand. .,Excellence Center in Veterinary Bioscience, Chiang Mai University, 50100, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
10
|
An Intranasal Vaccination with a Recombinant Outer Membrane Protein H against Haemorrhagic Septicemia in Swamp Buffaloes. Vet Med Int 2020; 2020:3548973. [PMID: 32547726 PMCID: PMC7271248 DOI: 10.1155/2020/3548973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic septicemia (HS) is an important infectious disease in cattle and buffaloes, caused by Pasteurella multocida B:2 and E:2. The intranasal recombinant OmpH-based vaccine was successfully used to protect dairy cattle from HS in a previous study. Thus, this study aimed to examine the protective ability of that vaccine among buffaloes. Four groups of Thai swamp buffaloes received different vaccines and were labeled as 100 or 200 μg of the rOmpH with CpG-ODN2007, commercial HS bacterin vaccine, and nonvaccinated control groups. Sera and whole blood were collected to examine the antibody levels and cellular immune response using indirect ELISA and MTT assay, respectively. Challenge exposure was performed with virulent P. multocida strain M-1404 serotype B:2 on day 72 of the experiment. The antibody titers to P. multocida among immunized buffaloes were significantly higher than in the control group (p < 0.01), especially the 200 μg of the rOmpH group. The stimulation index (SI) of the intranasally vaccinated groups revealed significantly higher levels than the nonvaccinated group (p < 0.01), but not different from the intramuscularly commercial HS vaccine. The clinical signs and high fever were observed after challenge exposure in the nonvaccinated group, while it was not observed among the 200 μg of rOmpH immunized buffaloes. The other immunized groups showed partial protection with transient fever. In conclusion, the rOmpH-based intranasal vaccine could elicit protective ability and induce antibody- and cell-mediated immune response against virulent P. multocida strain among swamp buffaloes.
Collapse
|
11
|
McGill JL, Sacco RE. The Immunology of Bovine Respiratory Disease: Recent Advancements. Vet Clin North Am Food Anim Pract 2020; 36:333-348. [PMID: 32327252 PMCID: PMC7170797 DOI: 10.1016/j.cvfa.2020.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, 1907 ISU C-Drive, VMRI Building 5, Ames, IA 50010, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Services, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|