1
|
Berge AC, Vertenten G. Bovine Coronavirus Prevalence and Risk Factors in Calves on Dairy Farms in Europe. Animals (Basel) 2024; 14:2744. [PMID: 39335334 PMCID: PMC11429389 DOI: 10.3390/ani14182744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated prevalence and risk factors in health, management, and biosecurity of bovine coronavirus (BCoV) in neonatal and weaned dairy calves on 125 dairy farms in Europe. Nasal and fecal swabs from neonatal calves, weaned calves, and fresh cows were analyzed for BCoV using RT-PCR, and blood and bulk milk samples were collected for BCoV antibody levels using ELISA. Multiple logistic regression models with random effects of herds were used to evaluate the herd health status, husbandry, management, and biosecurity associated with BCoV shedding (nasal and/or fecal PCR positive samples) in neonatal and weaned calves. BCoV was detected in 80% of herds and in 24% of neonatal calves, 23% of weaned calves, and 5% of fresh cows. The biosecurity scored on 109 dairies with Biocheck.Ugent was, on average, 60% (external score 71%, internal score 47%), and there was no clear association between various biosecurity measures on BCoV shedding in calves. Dry cow vaccination against BCoV reduced shedding in neonatal calves, whereas it was linked to increased shedding in weaned calves in these farms. Several husbandry factors, including nutrition (transition milk feeding and milk feeding levels) and management (group housing and weaning age), were associated with BCoV shedding in calves.
Collapse
Affiliation(s)
- Anna Catharina Berge
- Veterinary Epidemiology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburrylaan 133, 9820 Merelbeke, Belgium
| | - Geert Vertenten
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands
| |
Collapse
|
2
|
Cho HC, Kim Y, Cho YI, Park J, Choi KS. Evaluation of bovine coronavirus in Korean native calves challenged through different inoculation routes. Vet Res 2024; 55:74. [PMID: 38863015 PMCID: PMC11165853 DOI: 10.1186/s13567-024-01331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1β were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.
Collapse
Affiliation(s)
- Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Youngjun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea
- Department of Animal Hospital, Hanwoo (Korean indigenous cattle) Genetic Improvement Center, National Agricultural Cooperative Federation, Seosan, 31948, Republic of Korea
| | - Yong-Il Cho
- Department of Animal Science and Technology, College of Bio-Industry Science, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea.
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
3
|
Li S, Huang J, Cai X, Mao L, Xie L, Wang F, Zhou H, Yuan X, Sun X, Fu X, Fan B, Xu X, Li J, Li B. Prevalence and Evolutionary Characteristics of Bovine Coronavirus in China. Vet Sci 2024; 11:230. [PMID: 38921977 PMCID: PMC11209178 DOI: 10.3390/vetsci11060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Lingling Xie
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Fu Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Hua Zhou
- Qianxi Animal Disease Control Center, Qianxi 551500, China;
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Xincheng Fu
- Langfang Municipal Bureau of Agriculture and Rural Affairs, Langfang 065000, China;
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
5
|
Frucchi APS, Dall Agnol AM, Bronkhorst DE, Beuttemmuller EA, Alfieri AA, Alfieri AF. Bovine Coronavirus Co-infection and Molecular Characterization in Dairy Calves With or Without Clinical Respiratory Disease. Front Vet Sci 2022; 9:895492. [PMID: 35692294 PMCID: PMC9174899 DOI: 10.3389/fvets.2022.895492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022] Open
Abstract
Bovine respiratory disease (BRD) is considered a major cause of morbidity and mortality in young calves and is caused by a range of infectious agents, including viruses and bacteria. This study aimed to determine the frequency of viral and bacterial pathogens detected in calves with BRD from high-production dairy cattle herds and to perform the molecular characterization of N and S1 genes in identified bovine coronavirus (BCoV) strains. Nasal swabs were collected from 166 heifer calves, namely, 85 symptomatic and 81 asymptomatic calves aged between 5 and 90 days, from 10 dairy cattle herds. Nasal swabs were evaluated using molecular techniques for the identification of viruses (BCoV, bovine alphaherpesvirus 1, bovine viral diarrhea virus, bovine parainfluenza virus 3, and bovine respiratory syncytial virus) and bacteria (Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Mycoplasma bovis). In addition, five and two BCoV-positive samples were submitted to N and S1 gene amplification and nucleotide sequencing, respectively. The frequency of diagnosis of BCoV was higher (56%, 93/166) than the frequency of P. multocida (39.8%, 66/166) and M. haemolytica (33.1%, 55/166). The three microorganisms were identified in the calves of symptomatic and asymptomatic heifer calve groups. All other pathogens included in the analyses were negative. In the phylogenetic analysis of the S1 gene, the Brazilian strains formed a new branch, suggesting a new genotype, called # 15; from the N gene, the strains identified here belonged to cluster II. This study describes high rates of BCoV, P. multocida, and M. haemolytica in heifer calves from high-production dairy cattle herds with BRD. Additionally, the molecular characterization provides evidence that the circulating BCoV strains are ancestrally different from the prototype vaccine strains and even different BCoV strains previously described in Brazil.
Collapse
Affiliation(s)
- Ana Paula S. Frucchi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Alais M. Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Dalton E. Bronkhorst
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Edsel A. Beuttemmuller
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amauri A. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: Amauri A. Alfieri
| | - Alice F. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Pratelli A, Lucente MS, Cordisco M, Ciccarelli S, Di Fonte R, Sposato A, Mari V, Capozza P, Pellegrini F, Carelli G, Azzariti A, Buonavoglia C. Natural Bovine Coronavirus Infection in a Calf Persistently Infected with Bovine Viral Diarrhea Virus: Viral Shedding, Immunological Features and S Gene Variations. Animals (Basel) 2021; 11:ani11123350. [PMID: 34944126 PMCID: PMC8697958 DOI: 10.3390/ani11123350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary The evolution of a bovine coronavirus (BCoV) natural infection in a calf persistently infected with bovine viral diarrhea virus (BVDV) was described. The infected calf developed intermittent nasal discharge, diarrhea and hyperthermia. The total number of leukocytes/mL and the absolute differential number of neutrophils and lymphocytes resulted within the normal range, but the monocytes increased at T28 (time 28 post-infection) and the CD8+ subpopulation increased at T7 and between T28 and T35. BCoV shedding in nasal discharges and feces was detected up to three weeks post infection (p.i.) and high antibody titers persisted for up to 8 weeks p.i. Virus shedding increased until T14, contrary to what was observed in a previous study where BCoV was detected with a lower load in the co-infected (BCoV/BVDV) calves than in the calves infected with BCoV only. We can suppose that BVDV may have exacerbated the long viral excretion, as well as favoring the onset of mutations in the genome of BCoV. An extensive study was performed to verify if the selective pressure in the S gene could be a natural mode of variation of BCoV. Abstract The evolution of a bovine coronavirus (BCoV) natural infection in a calf persistently infected with bovine viral diarrhea virus (BVDV) was described. The infected calf developed intermittent nasal discharge, diarrhea and hyperthermia. The total number of leukocytes/mL and the absolute differential number of neutrophils and lymphocytes resulted within the normal range, but monocytes increased at T28 (time 28 post-infection). Flow-cytometry analysis evidenced that the CD8+ subpopulation increased at T7 and between T28 and T35. BCoV shedding in nasal discharges and feces was detected up to three weeks post infection and high antibody titers persisted up to T56. The RNA BCoV load increased until T14, contrary to what was observed in a previous study where the fecal excretion of BCoV was significantly lower in the co-infected (BCoV/BVDV) calves than in the calves infected with BCoV only. We can suppose that BVDV may have modulated the BCoV infection exacerbating the long viral excretion, as well as favoring the onset of mutations in the genome of BCoV detected in fecal samples at T21. An extensive study was performed to verify if the selective pressure in the S gene could be a natural mode of variation of BCoV, providing data for the identification of new epidemic strains, genotypes or recombinant betacoronaviruses.
Collapse
Affiliation(s)
- Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
- Correspondence: ; Tel.: +39-080-4679835
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Marco Cordisco
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Stefano Ciccarelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology at IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.D.F.); (A.A.)
| | - Alessio Sposato
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Viviana Mari
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Paolo Capozza
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Grazia Carelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology at IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.D.F.); (A.A.)
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima km 3, 70010 Valenzano (Ba), Italy; (M.S.L.); (M.C.); (S.C.); (A.S.); (V.M.); (P.C.); (F.P.); (G.C.); (C.B.)
| |
Collapse
|
7
|
Zhu Q, Su M, Li Z, Wang X, Qi S, Zhao F, Li L, Guo D, Feng L, Li B, Sun D. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res 2021; 308:198632. [PMID: 34793872 DOI: 10.1016/j.virusres.2021.198632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
In 2020, to trace the prevalence and evolution of bovine coronavirus (BCoV) in China, a total of 1383 samples (1016 fecal samples and 367 nasal swab samples) were collected from 1016 cattle exhibiting diarrhea symptoms on dairy farms and beef cattle farms in Heilongjiang Province, Northeast China. All samples were subjected to reverse transcription-polymerase chain reaction (RT-PCR) detection of the BCoV N gene, followed by an analysis of its epidemiology and genetic evolution. The results indicated that of the 1016 diarrhea-affected cattle, 15.45% (157/1016) were positive for BCoV, in which positive rates of the fecal and nasal swab samples were 12.20% (124/1016) and 21.53% (79/367), respectively. Of the 367 cattle whose nasal swab samples were collected, the BCoV positive rate of the corresponding fecal samples was 15.26% (56/367). BCoV infection was significantly associated with age, farming pattern, cattle type, farm latitude, sample type, and clinical symptom (p < 0.05). Of the 203 BCoV-positive samples, 20 spike (S) genes were successfully sequenced. The 20 identified BCoV strains shared nucleotide homologies of 97.7-100.0%, and their N-terminal domain of S1 subunit (S1-NTD: residues 15-298) differed genetically from the reference strains of South Korea and Europe. The 20 identified BCoV strains were clustered in the Asia-North America group (GII group) in the global strain-based phylogenetic tree and formed three clades in the Chinese strain-based phylogenetic tree. The HLJ/HH-10/2020 strain was clustered into the Europe group (GI group) in the S1-NTD-based phylogenetic tree, exhibiting N146/I, D148/G, and L154/F mutations that affect the S protein structure. Of the identified BCoV strains, one potential recombination event occurred between the HLJ/HH-20/2020 and HLJ/HH-10/2020 strains, which led to the generation of the recombinant BCV-AKS-01 strain. A selective pressure analysis on the S protein revealed one positively selected site (Asn509) among the 20 identified BCoV strains located inside the putative receptor binding domain (residues 326-540). These data provide a greater understanding of the epidemiology and evolution of BCoV in China.
Collapse
Affiliation(s)
- Qinghe Zhu
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Zijian Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Xiaoran Wang
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Feiyu Zhao
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Lu Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China.
| |
Collapse
|
8
|
Ven S, Arunvipas P, Lertwatcharasarakul P, Ratanapob N. Seroprevalence of bovine coronavirus and factors associated with the serological status in dairy cattle in the western region of Thailand. Vet World 2021; 14:2041-2047. [PMID: 34566319 PMCID: PMC8448641 DOI: 10.14202/vetworld.2021.2041-2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Aims: Bovine coronavirus (BCoV) is a pathogen affecting the productivities of dairy cattle worldwide. The present study aimed to determine the seroprevalence and factors associated with BCoV serological status using a commercial indirect enzyme-linked immunosorbent assay (ELISA). Materials and Methods: A cross-sectional study was conducted in the western region of Thailand. Blood samples were collected from 30 dairy herds. In total, 617 blood serum samples were tested using a commercial indirect ELISA for BCoV-specific immunoglobulin G antibodies. A questionnaire was used to collect data on the factors which have been identified as risk factors for BCoV antibody detection. The age and history of diarrhea of each animal were recorded. Fisher’s exact test was performed to univariately assess the association between BCoV serological status and possible risk factors. Variables with Fisher’s exact test p<0.10 were then evaluated using multivariate logistic regression to identify factors associated with BCoV serological status. The Bonferroni adjustment was used for multiple comparisons of significant variables in the final multivariate logistic regression model. Results: No herd was free from antibodies to BCoV. The individual seroprevalence of BCoV was 97.89% (604/617). The prevalence within herds was in the range of 45.45-100%. Cattle >3 years of age were more likely to be seropositive to BCoV compared to cattle <1 year of age (p=0.003), with the odds ratio being 81.96. Disinfecting diarrhea stools were a protective factor for being BCoV seropositive, with odds ratios of 0.08 and 0.06 compared to doing nothing (p=0.008) and to clean with water (p=0.002), respectively. Conclusion: BCoV seropositive dairy cattle were distributed throughout the western region of Thailand. The probability of being seropositive for BCoV increased with increasing animal age. Cleaning the contaminated stool with appropriate disinfectants should be recommended to farmers to minimize the spread of the virus.
Collapse
Affiliation(s)
- Samnang Ven
- Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Niorn Ratanapob
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| |
Collapse
|
9
|
Pattnaik B, S Patil S, S C, G. Amachawadi R, Dash AP, Yadav MP, Prasad KS, P S, Jain AS, Shivamallu C. COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:117-130. [DOI: 10.18006/2021.9(2).117.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses.
Collapse
|
10
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
11
|
Simmonds P, Williams S, Harvala H. Understanding the outcomes of COVID-19 - does the current model of an acute respiratory infection really fit? J Gen Virol 2021; 102:001545. [PMID: 33331810 PMCID: PMC8222868 DOI: 10.1099/jgv.0.001545] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is regarded as an acute, resolving infection followed by the development of protective immunity, recent systematic literature review documents evidence for often highly prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory and faecal samples, periodic recurrence of PCR positivity in a substantial proportion of individuals and increasingly documented instances of reinfection associated with a lack of protective immunity. This pattern of infection is quite distinct from the acute/resolving nature of other human pathogenic respiratory viruses, such as influenza A virus and respiratory syncytial virus. Prolonged shedding of SARS-CoV-2 furthermore occurs irrespective of disease severity or development of virus-neutralizing antibodies. SARS-CoV-2 possesses an intensely structured RNA genome, an attribute shared with other human and veterinary coronaviruses and with other mammalian RNA viruses such as hepatitis C virus. These are capable of long-term persistence, possibly through poorly understood RNA structure-mediated effects on innate and adaptive host immune responses. The assumption that resolution of COVID-19 and the appearance of anti-SARS-CoV-2 IgG antibodies represents virus clearance and protection from reinfection, implicit for example in the susceptible-infected-recovered (SIR) model used for epidemic prediction, should be rigorously re-evaluated.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Williams
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- National Microbiology Services, NHS Blood and Transplant, London, UK
| |
Collapse
|
12
|
Bovine respiratory coronavirus enhances bacterial adherence by upregulating expression of cellular receptors on bovine respiratory epithelial cells. Vet Microbiol 2021; 255:109017. [PMID: 33639390 DOI: 10.1016/j.vetmic.2021.109017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/14/2021] [Indexed: 11/22/2022]
Abstract
Bovine coronavirus (BCoV) is one of the agents causing bovine respiratory disease complex (BRDC), with single infection tending to be mild to moderate; the probability of developing pneumonia in BRDC may be affected by viral and bacterial combinations. Previously, we reported that bovine respiratory syncytial virus (BRSV) infection enhances adherence of Pasteurella multocida (PM) to cells derived from the bovine lower respiratory tract but that BRSV infection in cells derived from the upper respiratory tract reduces PM adherence. In this study, we sought to clarify whether the modulation of bacterial adherence to cells derived from the bovine upper and lower respiratory tract is shared by other BRDC-related viruses by infecting bovine epithelial cells from the trachea, bronchus and lung with BCoV and/or PM. The results showed that cells derived from both the upper and lower respiratory tract were susceptible to BCoV infection. Furthermore, all cells infected with BCoV exhibited increased PM adherence via upregulation of two major bacterial adhesion molecules, intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAF-R), suggesting that compared with BRSV infection, BCoV infection differentially modulates bacterial adherence. In summary, we identified distinct interaction between bovine respiratory viruses and bacterial infections.
Collapse
|
13
|
Wensman JJ, Stokstad M. Could Naturally Occurring Coronaviral Diseases in Animals Serve as Models for COVID-19? A Review Focusing on the Bovine Model. Pathogens 2020; 9:pathogens9120991. [PMID: 33256111 PMCID: PMC7760055 DOI: 10.3390/pathogens9120991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
The current pandemic of COVID-19 has highlighted the importance of basic studies on coronaviruses (CoVs) in general, and severe acute respiratory syndrome CoV type 2 (SARS-CoV-2) in particular. CoVs have for long been studied in veterinary medicine, due to their impact on animal health and welfare, production, and economy. Several animal models using coronaviral disease in the natural host have been suggested. In this review, different animal models are discussed, with the main focus on bovine CoV (BCoV). BCoV is endemic in the cattle population worldwide and has been known and studied for several decades. SARS-CoV-2 and BCoV are both betacoronaviruses, where BCoV is highly similar to human coronavirus (HCoV) OC43, encompassing the same virus species (Betacoronavirus 1). BCoV causes respiratory and gastrointestinal disease in young and adult cattle. This review summarizes the current knowledge of the similarities and dissimilarities between BCoV and SARS-CoV-2, as well as discussing the usage of BCoV as a model for human CoVs, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-671446
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0102 Oslo, Norway;
| |
Collapse
|
14
|
Simmonds P. Pervasive RNA Secondary Structure in the Genomes of SARS-CoV-2 and Other Coronaviruses. mBio 2020; 11:e01661-20. [PMID: 33127861 PMCID: PMC7642675 DOI: 10.1128/mbio.01661-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
The ultimate outcome of the coronavirus disease 2019 (COVID-19) pandemic is unknown and is dependent on a complex interplay of its pathogenicity, transmissibility, and population immunity. In the current study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated for the presence of large-scale internal RNA base pairing in its genome. This property, termed genome-scale ordered RNA structure (GORS) has been previously associated with host persistence in other positive-strand RNA viruses, potentially through its shielding effect on viral RNA recognition in the cell. Genomes of SARS-CoV-2 were remarkably structured, with minimum folding energy differences (MFEDs) of 15%, substantially greater than previously examined viruses such as hepatitis C virus (HCV) (MFED of 7 to 9%). High MFED values were shared with all coronavirus genomes analyzed and created by several hundred consecutive energetically favored stem-loops throughout the genome. In contrast to replication-associated RNA structure, GORS was poorly conserved in the positions and identities of base pairing with other sarbecoviruses-even similarly positioned stem-loops in SARS-CoV-2 and SARS-CoV rarely shared homologous pairings, indicative of more rapid evolutionary change in RNA structure than in the underlying coding sequences. Sites predicted to be base paired in SARS-CoV-2 showed less sequence diversity than unpaired sites, suggesting that disruption of RNA structure by mutation imposes a fitness cost on the virus that is potentially restrictive to its longer evolution. Although functionally uncharacterized, GORS in SARS-CoV-2 and other coronaviruses represents important elements in their cellular interactions that may contribute to their persistence and transmissibility.IMPORTANCE The detection and characterization of large-scale RNA secondary structure in the genome of SARS-CoV-2 indicate an extraordinary and unsuspected degree of genome structural organization; this could be effectively visualized through a newly developed contour plotting method that displays positions, structural features, and conservation of RNA secondary structure between related viruses. Such RNA structure imposes a substantial evolutionary cost; paired sites showed greater restriction in diversity and represent a substantial additional constraint in reconstructing its molecular epidemiology. Its biological relevance arises from previously documented associations between possession of structured genomes and persistence, as documented for HCV and several other RNA viruses infecting humans and mammals. Shared properties potentially conferred by large-scale structure in SARS-CoV-2 include increasing evidence for prolonged infections and induced immune dysfunction that prevents development of protective immunity. The findings provide an additional element to cellular interactions that potentially influences the natural history of SARS-CoV-2, its pathogenicity, and its transmission.
Collapse
Affiliation(s)
- P Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Abstract
Bovine coronaviruses are spread all over the world. They cause two types of clinical manifestations in cattle either an enteric, calf diarrhoea and winter dysentery in adult cattle, or respiratory in all age groups of cattle. The role of coronaviruses in respiratory infections is still a hot topic of discussion since they have been isolated from sick as well as healthy animals and replication of disease is rarely successful. Bovine coronavirus infection is characterised by high morbidity but low mortality. The laboratory diagnosis is typically based on serological or molecular methods. There is no registered drug for the treatment of virus infections in cattle and we are limited to supportive therapy and preventative measures. The prevention of infection is based on vaccination, biosecurity, management and hygiene. This paper will cover epidemiology, taxonomy, pathogenesis, clinical signs, diagnosis, therapy, economic impact and prevention of coronavirus infections in cattle.
Collapse
Affiliation(s)
- Jaka Jakob Hodnik
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, Ljubljana, Slovenia
| | - Jožica Ježek
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Starič
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Mekata H, Hamabe S, Sudaryatma PE, Kobayashi I, Kanno T, Okabayashi T. Molecular epidemiological survey and phylogenetic analysis of bovine respiratory coronavirus in Japan from 2016 to 2018. J Vet Med Sci 2020; 82:726-730. [PMID: 32269197 PMCID: PMC7324836 DOI: 10.1292/jvms.19-0587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bovine coronavirus (BCoV) is an etiological agent of bovine respiratory disease (BRD).
BRD is a costly illness worldwide; thus, epidemiological surveys of BCoV are important.
Here, we conducted a molecular epidemiological survey of BCoV in respiratory-diseased and
healthy cattle in Japan from 2016 to 2018. We found that 21.2% (58/273) of the
respiratory-diseased cattle were infected with BCoV. The respiratory-diseased cattle had
virus amounts 4.7 times higher than those in the asymptomatic cattle. Phylogenetic
analyses showed that the BCoV identified in Japan after 2005 formed an individual lineage
that was distinct from the strains found in other countries. These results suggest that
BCoV is epidemic and has evolved uniquely in Japan.
Collapse
Affiliation(s)
- Hirohisa Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Saori Hamabe
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Putu Eka Sudaryatma
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ikuo Kobayashi
- Field Science Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Toru Kanno
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido 062-0045, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan.,Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
17
|
Stokstad M, Klem TB, Myrmel M, Oma VS, Toftaker I, Østerås O, Nødtvedt A. Using Biosecurity Measures to Combat Respiratory Disease in Cattle: The Norwegian Control Program for Bovine Respiratory Syncytial Virus and Bovine Coronavirus. Front Vet Sci 2020; 7:167. [PMID: 32318587 PMCID: PMC7154156 DOI: 10.3389/fvets.2020.00167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Bovine respiratory disease (BRD) cause important health problems in all cattle husbandry systems. It contributes substantially to the use of antimicrobial substances and compromises animal welfare and the sustainability of the cattle industry. The existing preventive measures of BRD focus at the individual animal or herd level and include vaccination, mass treatment with antimicrobials and improvement of the animal's environment and general health status. Despite progress in our understanding of disease mechanism and technological development, the current preventive measures are not sufficiently effective. Thus, there is a need for alternative, sustainable strategies to combat the disease. Some of the primary infectious agents in the BRD complex are viruses that are easily transmitted between herds such as bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV). This conceptual analysis presents arguments for combatting BRD through improved external biosecurity in the cattle herds. As an example of a population-based approach to the control of BRD, the Norwegian BRSV/BCoV control-program is presented. The program is voluntary and launched by the national cattle industry. The core principle is classification of herds based on antibody testing and subsequent prevention of virus-introduction through improved biosecurity measures. Measures include external herd biosecurity barriers and regulations in the organization of animal trade to reduce direct and indirect transmission of virus. Improved biosecurity in a large proportion of herds will lead to a considerable effect at the population level. Positive herds are believed to gain freedom by time if new introduction is avoided. Vaccination is not used as part of the program. Dissemination of information to producers and veterinarians is essential. We believe that reducing the incidence of BRD in cattle is essential and will lead to reduced antimicrobial usage while at the same time improving animal health, welfare and production. Alternative approaches to the traditional control measures are needed.
Collapse
Affiliation(s)
- Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Veslemøy Sunniva Oma
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingrid Toftaker
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Olav Østerås
- Section for Research and Development in Primary Production, Tine SA, Oslo, Norway
| | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|