1
|
Zheng W, Jiang T, Zhang Z, Pan D, Tang W, Li Y, Jiang L, Zhu H, Yu X, Chen G, Wang J, Zhang J, Zhang X. Otus scops adenovirus: the complete genome sequence of a novel aviadenovirus discovered in a wild owl. Arch Virol 2023; 168:68. [PMID: 36656447 DOI: 10.1007/s00705-022-05647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023]
Abstract
We present the complete genome sequence of an aviadenovirus obtained by metagenomics from cloacal swabs taken from a free-living Eurasian scops owl (Otus scops, a small raptor distributed in Europe and several parts of Asia) in China. Thirty protein coding genes were predicted in this 40,239-bp-long genome, which encodes the largest fiber protein among all reported aviadenoviruses. The viral genome sequence is highly divergent, and the encoded proteins have an average of only 55% amino acid sequence identity to those of other adenoviruses. In phylogenetic analysis, the new owl virus grouped with members of the genus Aviadenovirus and formed a common clade with another owl adenovirus reported previously in Japan. This is the second complete genome sequence of an aviadenovirus discovered in owls, and its proteins have an average of 62% amino acid sequence identity to those of the previously reported owl adenovirus. Combining this result with comparative genomic analysis of all aviadenoviruses, we propose that this owl virus and the previously described Japanese owl adenovirus can be assigned to two new species in the genus Aviadenovirus. This study provides new data on the diversity of aviadenoviruses in wild birds.
Collapse
Affiliation(s)
- Weibo Zheng
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China
| | - Tingshu Jiang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Zhe Zhang
- Yantai Urban Drainage Service Centre, Yantai, 264000, Shandong, China
| | - Dong Pan
- Yantai Urban Drainage Service Centre, Yantai, 264000, Shandong, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, 250022, Shandong, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, 250022, Shandong, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, 264000, Shandong, China. .,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264000, Shandong, China. .,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Torii EH, Wünschmann A, Armién AG, Mor SK, Chalupsky E, Kumar R, Willette M. Adenoviral infection in 5 red-tailed hawks and a broad-winged hawk. J Vet Diagn Invest 2022; 34:796-805. [PMID: 35762098 DOI: 10.1177/10406387221105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adenoviral infections among raptors are best described in falcons and are characterized most commonly by necrotizing hepatitis and splenitis; only one case has been reported in a hawk. Five red-tailed hawks (Buteo jamaicensis) and a broad-winged hawk (Buteo platypterus) had an adenoviral infection based on history, histopathology, negative-stain electron microscopy, and PCR. All birds had acute onset of illness resulting in death; 3 had evidence of a concurrent bacterial infection. Microscopically, all 6 birds had solitary, pale eosinophilic-to-amphophilic, intranuclear inclusion bodies within presumed hematopoietic cells in bone marrow and macrophages in spleen. Five of the 6 birds had similar inclusions within hepatocytes and Kupffer cells. All but one bird had severe bone marrow necrosis. There was moderate splenic necrosis (3 of 6) and mild-to-marked hepatic necrosis (4 of 6). Negative-stain electron microscopy demonstrated adenoviral particles in bone marrow (5 of 6), liver (1 of 5), and/or spleen (1 of 5). PCR was positive for adenovirus in bone marrow (3 of 5), liver (1 of 3), spleen (4 of 6), and/or intestinal contents (2 of 3). Viral DNA polymerase gene sequences clustered within the Siadenovirus genus. There was 99% nucleotide identity to one another and 90% nucleotide identity with the closest related adenovirus (Harris hawk, EU715130). Our case series expands on the limited knowledge of adenoviral infections in hawks. The splenic and hepatic necrosis, and particularly the hitherto unreported bone marrow necrosis, suggest that adenoviral infection is clinically relevant and potentially fatal in hawks.
Collapse
Affiliation(s)
- Emma H Torii
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Arno Wünschmann
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Anibal G Armién
- California Animal Health & Food Safety Laboratory System, University of California-Davis, Davis, CA, USA
| | - Sunil K Mor
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Emma Chalupsky
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Rahul Kumar
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michelle Willette
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
3
|
Isolation and whole-genome sequencing of a novel aviadenovirus from owls in Japan. Arch Virol 2022; 167:829-838. [PMID: 35118528 DOI: 10.1007/s00705-022-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Adenoviruses have been reported to infect a variety of birds. Here, we isolated a novel adenovirus from the liver of a dead owl chick (Bengal eagle owl; Bubo bengalensis) at a raptor-breeding facility in Japan and determined the complete genome sequence of the virus. We performed necropsies on the dead owl chicks and found that they had enlarged livers, pericardial edema, and focal necrosis of the liver tissue. Transmission electron microscopy of the liver tissue revealed a virus-like structure, appearing as paracrystalline arrays in the nucleus, and immunohistochemical staining with anti-adenovirus antibodies showed positive reactions in hepatocytes and other cells. Attempts to isolate the virus from homogenized liver tissue of a dead owl chick showed a cytopathic effect on chicken-derived cultured cells after multiple blind passages. Further, we determined the complete genome sequence of this virus and performed phylogenetic analysis, revealing that this adenovirus belongs to the genus Aviadenovirus, forming a cluster with fowl and turkey aviadenoviruses. The amino acid sequence divergence between the DNA polymerase of this virus and its closest known adenovirus relative is approximately 29%, implying that this virus can be assigned to a new species in the genus Aviadenovirus. Based on our data, this novel owl adenovirus is a likely cause of fatal infections in owls, which may threaten wild and captive owl populations. Further, this virus is unique among raptor adenoviruses in that it infects chicken-derived cultured cells, raising the importance of further investigations to evaluate interspecies transmission of this virus.
Collapse
|
5
|
Komatsu T, Yoshida E, Shigenaga A, Yasuie N, Uchiyama S, Takamura Y, Sugie K, Kimura K, Haritani M, Shibahara T. Fatal suppurative meningoencephalitis caused by Klebsiella pneumoniae in two calves. J Vet Med Sci 2021; 83:1113-1119. [PMID: 34024871 PMCID: PMC8349807 DOI: 10.1292/jvms.21-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
One calf died (No. 1) and another was euthanized following astasia (No. 2). Histopathological examination revealed suppurative meningoencephalitis in these
calves. Klebsiella pneumoniae antigens were detected in lesions. Thymocytes were decreased in the thymus cortex in both cases. 16S rRNA gene
sequencing of the No. 1 isolate and bacterial extracts from formalin fixed paraffin embedded sections of No. 2 revealed that both samples were K.
pneumoniae. The No. 1 isolate showed multidrug resistance against penicillin antibiotics, fosfomycin, streptomycin, macrolide antibiotics,
tetracycline antibiotics, and clindamycin. Immunosuppression is a significant septicemic K. pneumoniae infection risk factor. Our study
provides new aspects regarding K. pneumoniae infections in cattle, bacterial meningoencephalitis differentiation, and K.
pneumoniae and bacterial meningoencephalitis treatments.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Erina Yoshida
- Miyazaki Prefectural Livestock Hygiene Service Center, 3151-1 Shimonaka, Sadowaracho, Miyazaki, Miyazaki 880-0212, Japan
| | - Ayumi Shigenaga
- Miyazaki Prefectural Livestock Hygiene Service Center, 3151-1 Shimonaka, Sadowaracho, Miyazaki, Miyazaki 880-0212, Japan
| | - Nozomi Yasuie
- Hinode Animal Clinic, 4-1 Owaki, Heijimacho, Yatomi, Aichi 498-0031, Japan
| | - Shintaro Uchiyama
- Aichi Prefectural Tobu Livestock Hygiene Service Center, 51-1 Konami, Nishimiyukicho, Toyohashi, Aichi 441-8113, Japan
| | - Yuji Takamura
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kennosuke Sugie
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Haritani
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|