1
|
Kim SJ, Jo YJ, Jeong SH, Kim YH, Hee Han J. An investigation of antioxidative and anti-inflammatory effects of Taraxacum coreanum (white dandelion) in lactating Holstein dairy cows. J Adv Vet Anim Res 2024; 11:330-338. [PMID: 39101095 PMCID: PMC11296163 DOI: 10.5455/javar.2024.k781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The aim of this investigation was to examine the impact of Taraxacum coreanum (known as dandelion) (TC) and TC mixtures with milk thistle (MT) or Aspergillus oryzae (AO) as feed additives on the immune response, milk quality, and milk production in Holstein cows over 6 weeks of administration. Materials and Methods Thirty-two healthy Holstein dairy cows were provided 30 kg of total mixed ration (TMR) with no TC, 90 gm TC, 54 gm TC + 36 gm MT, or 54 gm TC + 36 gm AO 40% groups. The feed additives were supplied daily in two equal portions (per 45 gm) by topdressing the TMR for 6 weeks. Milk and blood samples were collected weekly. Results In the TC-treated cows (TC, TC + MT, and TC + AO groups), significantly lower peripheral blood white blood cell (WBC) counts at 6 weeks and milk somatic cell counts (SCCs) at 4-6 weeks of administration were observed. Concentrations of serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) were notably elevated in cows treated with TC for 4-6 weeks, while levels of proinflammatory cytokines concentrations of tumor necrosis factor-alpha (TNF-α) and chemokine (IL-8) were significantly reduced in TC-treated cows after 3-6 weeks of administration. Conclusion These results suggested that TC or a TC mixture with other medicinal herbs supplementations enhanced the serum antioxidative activities and, consequently, might suppress the adverse immune response due to lower serum TNF-α and IL-8 release supported by lower WBC and SCC counts.
Collapse
Affiliation(s)
- Sung Jae Kim
- Department of Companion Animal Health, Kyungbok University, Namyangju, Korea
| | - Young Jun Jo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Sang-Hee Jeong
- Department of Biomedical Laboratory Science, College of Life and Health Science, Hoseo University, Asan, Korea
| | - Yo-Han Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Zuo RK, Wang C, Yu ZY, Shi HM, Song XK, Zhou SD, Ma NN, Chang GJ, Shen XZ. A high concentrate diet inhibits forkhead box protein A2 expression, and induces oxidative stress, mitochondrial dysfunction and mitochondrial unfolded protein response in the liver of dairy cows. Microb Pathog 2024; 188:106570. [PMID: 38341108 DOI: 10.1016/j.micpath.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.
Collapse
Affiliation(s)
- Ran Kun Zuo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Can Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhi Yuan Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Min Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiao Kun Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shen Dong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Na Na Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guang Jun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiang Zhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Żarczyńska K, Brym P, Tobolski D. The Role of Selenitetriglycerides in Enhancing Antioxidant Defense Mechanisms in Peripartum Holstein-Friesian Cows. Animals (Basel) 2024; 14:610. [PMID: 38396578 PMCID: PMC10886193 DOI: 10.3390/ani14040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The transition period in high-yielding dairy cows is a critical phase marked by an elevated risk of oxidative stress. This study evaluated the effect of oral selenitetriglyceride supplementation on oxidative stress management in periparturient cows. A controlled experiment was conducted on 12 cows, divided into two groups: the experimental group (STG) received selenitetriglycerides (0.5 mg Se/kg BW), while the control group (CON) was given a placebo, starting 12 days before calving until the calving day. Blood and liver tissue samples were collected at predetermined intervals around the time of parturition. The study observed a significant increase in serum selenium levels and NEFA stabilization in the STG group compared with the control. Antioxidant parameters indicated elevated GSH-Px and CAT concentrations in the STG group. Liver gene expression analysis revealed a significant increase in SOD2 mRNA levels in the STG group (FC = 4.68, p < 0.01). Conversely, GSH-Px3 expression significantly decreased (FC = 0.10, p < 0.05) on the 7th day postpartum in the CON group. However, SOD1, SOD3, and CAT expressions remained stable in both groups. These findings highlight the beneficial role of selenitetriglycerides in enhancing antioxidant capacity and influencing specific gene expressions associated with oxidative stress management in dairy cows during the peripartum period.
Collapse
Affiliation(s)
- Katarzyna Żarczyńska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Dawid Tobolski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| |
Collapse
|
4
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|
5
|
Wang Q, Gao B, Yue X, Cui Y, Loor JJ, Dai X, Wei X, Xu C. Weighted Gene Co-expression Network Analysis Identifies Specific Modules and Hub Genes Related to Subacute Ruminal Acidosis. Front Vet Sci 2022; 9:897714. [PMID: 35754546 PMCID: PMC9226770 DOI: 10.3389/fvets.2022.897714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Weighted gene co-expression network analysis (WGCNA) was used to understand the pathogenesis of subacute ruminal acidosis (SARA) and identify potential genes related to the disease. Microarray data from dataset GSE143765, which included 22 cows with and nine cows without SARA, were downloaded from the NCBI Gene Expression Omnibus (GEO). Results of WGCNA identified highly correlated modules of sample genes, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed further biological insights into SARA-related modules. The protein-protein interaction (PPI) network, modules from the PPI network, and cistron annotation enrichment of modules were also analyzed. A total of 14,590 DEGs were used for the WGCNA. Construction of a protein-protein network identified DCXR, MMP15, and MMP17 as hub genes. Functional annotation showed that DCXR mainly exhibited L-xylulose reductase (NADP+) activity, glucose metabolic process, xylulose metabolic process, and carbonyl reductase (NADPH) activity, which are involved in the pentose and glucuronate interconversion pathways. MMP15 and MMP17 mainly have a collagen catabolic process. Overall, the results of this study aid the clarification of the biological and metabolic processes associated with SARA at the molecular level. The data highlight potential mechanisms for the future development of intervention strategies to reduce or alleviate the risk of SARA.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bingnan Gao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xueqing Yue
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Xiaoxia Dai
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Xu Wei
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Leuven, Belgium
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| |
Collapse
|
6
|
CAO MX, WANG XR, HU WY, YIN D, REN CZ, CHEN SY, YU ML, WEI YY, HU TJ. Regulatory effect of Panax notoginseng saponins on the oxidative stress and histone acetylation induced by porcine circovirus type 2. J Vet Med Sci 2022; 84:600-609. [PMID: 35125373 PMCID: PMC9096040 DOI: 10.1292/jvms.21-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) exists widely in swine populations worldwide, and healthy PCV2 virus carriers have enhanced the severity of the infection, which is becoming more difficult to control. This study investigated the regulatory effect of Panax notoginseng saponins (PNS) on the oxidative stress and histone acetylation modification induced by PCV2 in vitro and in mice. In vitro, PNS significantly increased the scavenging capacities of superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) and reduced the content of hydrogen peroxide (H2O2) induced by PCV2 in porcine alveolar macrophages (3D4/2). In addition, PNS decreased the protein expression level of histone H4 acetylation (Ac-H4) by increasing the activity of histone deacetylase (HDAC) in PCV2-infected 3D4/2 cells. In vivo, PNS enhanced the scavenging capacities of •OH and O2•- and reduced the content of H2O2 in the spleens of PCV2-infected mice. PNS also reduced the protein expression level of histone H3 acetylation (Ac-H3) by reducing the activity of histone acetylase (HAT) and increasing the activity of HDAC in the spleens of PCV2-infected mice. PCV2 infection activated oxidative stress and histone acetylation in vitro and in mice, but PNS ameliorated this oxidative stress. The research can provide experimental basis for exploring the antioxidant effect and the regulation of histone acetylation of PNS on PCV2-infected 3D4/2 cells and mice in vitro and in vivo, and provide new ideas for the treatment of PCV2 infection.
Collapse
Affiliation(s)
- Mi-Xia CAO
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Xin-Rui WANG
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Wen-Yue HU
- School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai, China
| | - Dan YIN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Chun-Zhi REN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Si-Yu CHEN
- Guangdong Provincial Key Laboratory of Animal Molecular
Design and Precise Breeding, College of Life Science and Engineering, Foshan University,
Foshan, China
| | - Mei-Ling YU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ying-Yi WEI
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ting-Jun HU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| |
Collapse
|
7
|
The Physiological Roles of Vitamin E and Hypovitaminosis E in the Transition Period of High-Yielding Dairy Cows. Animals (Basel) 2021; 11:ani11041088. [PMID: 33920342 PMCID: PMC8070221 DOI: 10.3390/ani11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In high-yield cows, most production diseases occur during transition periods. Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the incidence of peripartum diseases. Therefore, many studies which have been published for more than 30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency was thought to be caused by complex factors. However, until recently, the physiological factors or pathways underlying hypovitaminosis E in the transition period have been poorly understood. In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism, transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol level and hypovitaminosis E with changes in α-tocopherol-related genes expression. Abstract Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.
Collapse
|