1
|
Martineau M, Ambroset C, Lefebvre S, Kokabi É, Léon A, Tardy F. Unravelling the main genomic features of Mycoplasma equirhinis. BMC Genomics 2024; 25:886. [PMID: 39304803 DOI: 10.1186/s12864-024-10789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Mycoplasma spp. are wall-less bacteria with small genomes (usually 0.5-1.5 Mb). Many Mycoplasma (M.) species are known to colonize the respiratory tract of both humans and livestock animals, where they act as primary pathogens or opportunists. M. equirhinis was described for the first time in 1975 in horses but has been poorly studied since, despite regular reports of around 14% prevalence in equine respiratory disorders. We recently showed that M. equirhinis is not a primary pathogen but could play a role in co-infections of the respiratory tract. This study was a set up to propose the first genomic characterization to better our understanding of the M. equirhinis species. RESULTS Four circularized genomes, two of which were generated here, were compared in terms of synteny, gene content, and specific features associated with virulence or genome plasticity. An additional 20 scaffold-level genomes were used to analyse intra-species diversity through a pangenome phylogenetic approach. The M. equirhinis species showed consistent genomic homogeneity, pointing to potential clonality of isolates despite their varied geographical origins (UK, Japan and various places in France). Three different classes of mobile genetic elements have been detected: insertion sequences related to the IS1634 family, a putative prophage related to M. arthritidis and integrative conjugative elements related to M. arginini. The core genome harbours the typical putative virulence-associated genes of mycoplasmas mainly involved in cytoadherence and immune escape. CONCLUSION M. equirhinis is a highly syntenic, homogeneous species with a limited repertoire of mobile genetic elements and putative virulence genes.
Collapse
Affiliation(s)
- Matthieu Martineau
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Chloé Ambroset
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Stéphanie Lefebvre
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Éléna Kokabi
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Albertine Léon
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Florence Tardy
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France.
- Anses, Ploufragan-Plouzané-Niort Laboratory-Mycoplasmology, Bacteriology and Antimicrobial, Resistance Unit, Ploufragan, F-22440, France.
| |
Collapse
|
2
|
Kinoshita Y, Niwa H, Uchida-Fujii E, Ueno T. A real-time PCR assay for the quantification of Mycoplasma equirhinis in tracheal wash samples from Thoroughbred horses. J Vet Diagn Invest 2024; 36:108-111. [PMID: 37919953 PMCID: PMC10734586 DOI: 10.1177/10406387231207631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Mycoplasma equirhinis is the predominant equine Mycoplasma sp. isolated from clinically normal horses and is suspected to be associated with inflammatory airway disease in which cough is the primary sign. Quantitative evaluation of bacterial counts is useful in assessing the association between the bacteria in samples and observed clinical signs, but this evaluation has been difficult with conventional culture methods of M. equirhinis given the need for pre-enrichment using liquid cultures. We established a quantitative real-time PCR (qPCR) assay for the quantification of M. equirhinis, targeting the hypothetical protein FJM08_00025. We confirmed its high species-specificity for M. equirhinis and a limit of detection of 2.9 copies/reaction. We quantified M. equirhinis in tracheal wash samples from 20 clinically normal horses and 22 coughing horses. The copy numbers detected by qPCR in 18 of the 22 samples from clinically affected horses were within the range detected in the 20 clinically normal horses (0-84 copies/reaction). The remaining 4 samples had considerably higher copy numbers (734-1,620,000 copies/reaction), suggesting the likely involvement of M. equirhinis infection. Quantitative evaluation of M. equirhinis over time using our qPCR assay may allow a more accurate assessment of M. equirhinis infection in coughing horses compared to culture methods.
Collapse
Affiliation(s)
- Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotuke, Tochigi, Japan
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotuke, Tochigi, Japan
| | - Eri Uchida-Fujii
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotuke, Tochigi, Japan
| | - Takanori Ueno
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotuke, Tochigi, Japan
| |
Collapse
|
3
|
Martineau M, Kokabi E, Taiebi A, Lefebvre S, Pradier S, Jaÿ M, Tardy F, Leon A. Epidemiology and pathogenicity of M. equirhinis in equine respiratory disorders. Vet Microbiol 2023; 287:109926. [PMID: 38006720 DOI: 10.1016/j.vetmic.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Mycoplasmas are pathogens involved in respiratory disorders of various animal hosts. In horses, Mycoplasma (M.) equirhinis is the species most frequently detected in clinical respiratory specimens, with a prevalence of 12-16%, but its clinical implication in equine respiratory disorders remains unclear. Here we screened 1948 clinical specimens for the presence of M. equirhinis. The samples were both tracheal washes (TW) and bronchoalveolar lavages (BAL) collected by veterinarians in France in day-to-day work between 2020 and 2022. The samples were associated with a standardized form that served to collect key general and clinical information, such as horse age, breed, and living environment. M. equirhinis was detected using a combination of culture and post-enrichment PCR. Other diagnostic data included virology and bacteriology as well as neutrophil counts, when available. Prevalence of M. equirhinis was examined as a function of a clinical score based on four significant clinical signs (nasal discharge, cough, dyspnoea, and hyperthermia). Multivariate logistic regression analysis was run to identify risk factors for the presence of M. equirhinis, and comparative prevalence analysis was used to test for association with other bacteria and viruses. TW and BAL were analysed independently, as we found that TW samples were associated with a higher prevalence of M. equirhinis. As prevalence remained steady whatever the clinical score, M. equirhinis cannot be considered a primary pathogen. M. equirhinis was more frequently isolated in thoroughbreds and trotters and in horses living exclusively stabled compared to other horses or other living environments. M. equirhinis was never detected in BAL specimens with a 'normal' neutrophil count, i.e. 5%, suggesting it could be associated with an inflammatory response, similar to that observed in equine asthma. Prevalence of M. equirhinis was shown to increase in the presence of other bacteria such as Streptococcus equi subsp. zooepidemicus (S. zoo) or viruses, and S. zoo load was higher in M. equirhinis-positive samples, suggesting a potential increase of clinical signs in the event of co-infection.
Collapse
Affiliation(s)
- Matthieu Martineau
- LABÉO, Research Department, Saint-Contest, 14000 Caen, France; Univ of Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, F-14000 Caen, France; University of Lyon, Anses, VetAgro Sup, UMR Animal mycoplasmosis, 69007 Lyon, France
| | - Elena Kokabi
- LABÉO, Research Department, Saint-Contest, 14000 Caen, France; Univ of Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, F-14000 Caen, France
| | - Anis Taiebi
- LABÉO, Research Department, Saint-Contest, 14000 Caen, France; Univ of Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, F-14000 Caen, France
| | - Stéphanie Lefebvre
- University of Lyon, Anses, VetAgro Sup, UMR Animal mycoplasmosis, 69007 Lyon, France
| | | | - Maryne Jaÿ
- University of Lyon, Anses, VetAgro Sup, UMR Animal mycoplasmosis, 69007 Lyon, France
| | - Florence Tardy
- University of Lyon, Anses, VetAgro Sup, UMR Animal mycoplasmosis, 69007 Lyon, France.
| | - Albertine Leon
- LABÉO, Research Department, Saint-Contest, 14000 Caen, France; Univ of Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, F-14000 Caen, France.
| |
Collapse
|
4
|
Martineau M, Castagnet S, Kokabi E, Tricot A, Jaÿ M, Léon A, Tardy F. Detection of Mycoplasma spp. in horses with respiratory disorders. Equine Vet J 2023; 55:747-754. [PMID: 36572918 DOI: 10.1111/evj.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bacteria belonging to the genus Mycoplasma are small-sized, have no cell walls and small genomes. They commonly cause respiratory disorders in their animal hosts. Three species have been found in the respiratory tract of horses worldwide, that is., Mycoplasma (M.) equirhinis, M. pulmonis and M. felis, but their role in clinical cases remains unclear. OBJECTIVES The aim of this study was to i) develop and validate tools to detect, isolate and identify different Mycoplasma spp. strains in clinical equine respiratory-tract specimens and ii) subsequently define the prevalence of the three species in France depending on sample types and horse characteristics (age, breed, sex). STUDY DESIGN Validation of a workflow for mycoplasma diagnosis and subsequent prevalence study. METHODS Mycoplasma-free tracheal wash samples spiked with numerated strains and DNA dilutions were used to validate the culture methods and real-time PCR (rt-PCR) assay. Isolated strains were identified by 16S rRNA gene sequencing. Prevalences were determined on a population of 616 horses with respiratory disorders, sampled in France in 2020. RESULTS In total, 104 horses (16.9%) were found to be positive for Mycoplasma spp. by at least one method. M. equirhinis was the predominant circulating species, accounting for 85% of the rt-PCR-positive samples and 98% of the 40 cultured strains. MAIN LIMITATION The proposed pre-enrichment procedure improves the sensitivity of detection but hinders the quantification of the initial mycoplasma load in the clinical specimens. CONCLUSIONS Prevalence of mycoplasma varied with age, breed, and type of sample.
Collapse
Affiliation(s)
- Matthieu Martineau
- LABÉO, Research Department, St Contest, Caen, France
- NormandieUniversité, CAEN/ROUEN Universités, DYNAMICURE, INSERM U1311, France
- Université de Lyon, Anses, VetAgro Sup, UMR Mycoplasmoses Animales, Lyon, France
| | - Sophie Castagnet
- LABÉO, Research Department, St Contest, Caen, France
- NormandieUniversité, CAEN/ROUEN Universités, DYNAMICURE, INSERM U1311, France
| | - Elena Kokabi
- LABÉO, Research Department, St Contest, Caen, France
- NormandieUniversité, CAEN/ROUEN Universités, DYNAMICURE, INSERM U1311, France
| | - Agnès Tricot
- Université de Lyon, Anses, VetAgro Sup, UMR Mycoplasmoses Animales, Lyon, France
| | - Maryne Jaÿ
- Université de Lyon, Anses, VetAgro Sup, UMR Mycoplasmoses Animales, Lyon, France
| | - Albertine Léon
- LABÉO, Research Department, St Contest, Caen, France
- NormandieUniversité, CAEN/ROUEN Universités, DYNAMICURE, INSERM U1311, France
| | - Florence Tardy
- Université de Lyon, Anses, VetAgro Sup, UMR Mycoplasmoses Animales, Lyon, France
| |
Collapse
|
5
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|