1
|
Kassem S, Hamdy ME, Selim KM, Elmasry DMA, Shahein MA, El-Husseini DM. Development of Paper-Based Fluorescent Molecularly Imprinted Polymer Sensor for Rapid Detection of Lumpy Skin Disease Virus. Molecules 2024; 29:1676. [PMID: 38611955 PMCID: PMC11013595 DOI: 10.3390/molecules29071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Lumpy Skin Disease (LSD) is a notifiable viral disease caused by Lumpy Skin Disease virus (LSDV). It is usually associated with high economic losses, including a loss of productivity, infertility, and death. LSDV shares genetic and antigenic similarities with Sheep pox virus (SPV) and Goat pox (GPV) virus. Hence, the LSDV traditional diagnostic tools faced many limitations regarding sensitivity, specificity, and cross-reactivity. Herein, we fabricated a paper-based turn-on fluorescent Molecularly Imprinted Polymer (MIP) sensor for the rapid detection of LSDV. The LSDV-MIPs sensor showed strong fluorescent intensity signal enhancement in response to the presence of the virus within minutes. Our sensor showed a limit of detection of 101 log10 TCID50/mL. Moreover, it showed significantly higher specificity to LSDV relative to other viruses, especially SPV. To our knowledge, this is the first record of a paper-based rapid detection test for LSDV depending on fluorescent turn-on behavior.
Collapse
Affiliation(s)
- Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Dalia M. A. Elmasry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Momtaz A. Shahein
- Virology Research Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Dalia M. El-Husseini
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| |
Collapse
|
2
|
Haga IR, Shih BB, Tore G, Polo N, Ribeca P, Gombo-Ochir D, Shura G, Tserenchimed T, Enkhbold B, Purevtseren D, Ulziibat G, Damdinjav B, Yimer L, Bari FD, Gizaw D, Adedeji AJ, Atai RB, Adole JA, Dogonyaro BB, Kumarawadu PL, Batten C, Corla A, Freimanis GL, Tennakoon C, Law A, Lycett S, Downing T, Beard PM. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024; 16:557. [PMID: 38675899 PMCID: PMC11053774 DOI: 10.3390/v16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.
Collapse
Grants
- BB/R002606/1, BB/R008833/1, BB/X011038/1, BB/X011046/1, BB/CCG2250, BB/CCG1780/1, BBS/E/RL/230002C, BBS/E/RL/230002D, , BBS/E/I/00007039, /1, BB/IDG2250/1, Biotechnology and Biological Sciences Research Council
Collapse
Affiliation(s)
- Ismar R. Haga
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Barbara B. Shih
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK
| | - Gessica Tore
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Noemi Polo
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- UK Health Security Agency, 61 Colindale Ave, London NW9 5EQ, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, Mathematics Institute, Zeeman Builing, University of Warwick, Coventry CV4 7AL, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Ronald Ross Building, University of Liverpool, Liverpool L69 7BE, UK
- Biomathematics and Statistics Scotland, James Maxwell Clerk Building, Peter Guthrie Tait Road, Kings Buildings, Edinburgh EH9 3FD, UK
| | - Delgerzul Gombo-Ochir
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gansukh Shura
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Tsagaan Tserenchimed
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Bazarragchaa Enkhbold
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Dulam Purevtseren
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gerelmaa Ulziibat
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Batchuluun Damdinjav
- General Authority for Veterinary Service, Ministry of Food, Agriculture and Light Industry, Ulaanbaatar 13381, Mongolia;
| | - Lama Yimer
- School of Veterinary Medicine, Wollega University, Nekemte P.O. Box 395, Ethiopia;
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Fufa D. Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Daniel Gizaw
- Animal Health Institute (AHI), Sebata P.O. Box 04, Ethiopia;
| | - Adeyinka Jeremy Adedeji
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Rebecca Bitiyong Atai
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Jolly Amoche Adole
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | | | | | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Graham L. Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Chandana Tennakoon
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Andy Law
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Tim Downing
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Philippa M. Beard
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
3
|
Akther M, Akter SH, Sarker S, Aleri JW, Annandale H, Abraham S, Uddin JM. Global Burden of Lumpy Skin Disease, Outbreaks, and Future Challenges. Viruses 2023; 15:1861. [PMID: 37766268 PMCID: PMC10535115 DOI: 10.3390/v15091861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Lumpy skin disease (LSD), a current global concern, causes economic devastation in livestock industries, with cattle and water buffalo reported to have higher morbidity and lower mortality rates. LSD is caused by lumpy skin disease virus (LSDV), a member of the Poxviridae family. It is an enzootic, rapidly explorative and sometimes fatal infection, characterized by multiple raised nodules on the skin of infected animals. It was first reported in Zambia in 1929 and is considered endemic in Africa south of the Sahara desert. It has gradually spread beyond Africa into the Middle East, with periodic occurrences in Asian and East European countries. Recently, it has been spreading in most Asian countries including far East Asia and threatens incursion to LSD-free countries. Rapid and accurate diagnostic capabilities, virus identification, vaccine development, vector control, regional and international collaborations and effective biosecurity policies are important for the control, prevention, and eradication of LSD infections. This review critically evaluates the global burden of LSD, the chronological historical outbreaks of LSD, and future directions for collaborative global actions.
Collapse
Affiliation(s)
- Mahfuza Akther
- Department of Pathology and Parasitology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Joshua W. Aleri
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Henry Annandale
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Jasim M. Uddin
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
4
|
Bianchini J, Simons X, Humblet MF, Saegerman C. Lumpy Skin Disease: A Systematic Review of Mode of Transmission, Risk of Emergence and Risk Entry Pathway. Viruses 2023; 15:1622. [PMID: 37631965 PMCID: PMC10458895 DOI: 10.3390/v15081622] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The spread of lumpy skin disease (LSD) to free countries over the last 10 years, particularly countries in Europe, Central and South East Asia, has highlighted the threat of emergence in new areas or re-emergence in countries that achieved eradication. This review aimed to identify studies on LSD epidemiology. A focus was made on hosts, modes of transmission and spread, risks of outbreaks and emergence in new areas. In order to summarize the research progress regarding the epidemiological characteristics of LSD virus over the last 40 years, the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement guidelines were followed, via two databases, i.e., PubMed (biomedical literature) and Scopus (peer-reviewed literature including scientific journals, books, and conference proceedings). A total of 86 scientific articles were considered and classified according to the type of epidemiological study, i.e., experimental versus observational. The main findings and limitations of the retrieved articles were summarized: buffaloes are the main non-cattle hosts, the main transmission mode is mechanical, i.e., via blood-sucking vectors, and stable flies are the most competent vectors. Vectors are mainly responsible for a short-distance spread, while cattle trade spread the virus over long distances. Furthermore, vaccine-recombinant strains have emerged. In conclusion, controlling animal trade and insects in animal transport trucks are the most appropriate measures to limit or prevent LSD (re)emergence.
Collapse
Affiliation(s)
- Juana Bianchini
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health, (FARAH) Centre, Liège University, 4000 Liège, Belgium;
| | - Xavier Simons
- Unit Veterinary Epidemiology, Department Epidemiology and Public Health, Sciensano, 1050 Brussels, Belgium;
| | - Marie-France Humblet
- Department of Occupational Protection and Hygiene, Unit Biosafety, Biosecurity and Environmental Licences, Liège University, 4000 Liège, Belgium;
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health, (FARAH) Centre, Liège University, 4000 Liège, Belgium;
| |
Collapse
|
5
|
Eom HJ, Lee ES, Yoo HS. Lumpy skin disease as an emerging infectious disease. J Vet Sci 2023; 24:e42. [PMID: 37271510 DOI: 10.4142/jvs.23016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 06/06/2023] Open
Abstract
Lumpy skin disease (LSD) is one of the most important emerging transboundary diseases. Recently, LSD has emerged in many countries in the northern hemisphere. The LSD virus has a huge genome and is highly resistant to environmental conditions. The virus is also host-specific and large ruminants, such as cattle and domestic water buffalo, are particularly susceptible. In addition, wild ruminants can serve as potential reservoirs for spreading the LSD virus. The emergence might be related to climate change in various regions because LSD is an arthropod-borne infectious disease. This disease causes enormous economic losses, such as leather damage, decreased milk production, abortion, and death in infected ruminants. The economic importance of LSD in the bovine industry has forced countries to develop and implement control strategies against the disease. With the recent global spread and the economic impact, LSD will be discussed intensively. In addition, effective preventive measures are suggested based on the presence or absence of LSD outbreaks.
Collapse
Affiliation(s)
- Hye Jin Eom
- Department of Infectious Diseases, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Eun-Seo Lee
- Department of Infectious Diseases, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Wei YR, Ma WG, Wang P, Wang W, Su XH, Yang XY, Mi XY, Wu JY, Huang J. Retrospective genomic analysis of the first Lumpy skin disease virus outbreak in China (2019). Front Vet Sci 2023; 9:1073648. [PMID: 36713885 PMCID: PMC9879060 DOI: 10.3389/fvets.2022.1073648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
Lumpy skin disease caused by Lumpy skin disease virus (LSDV) is a severe systemic disease affecting cattle and other ruminants. Lumpy skin disease was first reported in northwest China in August 2019 and has severely threatened the cattle breeding industry in China. However, there have been limited genomic studies of LSDV from the first outbreak and its subsequent epidemics. This study aims to characterize the comparative genomic evolution of the LSDV strain from the first outbreak in China. The etiological agent was isolated in a Madin-Darby bovine kidney cell culture and subsequently identified by PCR and Sanger sequencing of six selected genes. The genome sequence was determined using Illumina sequencing and analyzed through genome alignment and phylogenetic tree. The results showed that all six genes were successfully amplified and genetically clustered into LSDV. The virus presented the highest homology to strain China/GD01/2020, which shared 100% identities among 150 open reading frames (ORFs), and 97.1-99.7% identities among additional 6 ORFs. Bayesian inference tree analysis revealed that the virus shared a common ancestor with LSDV strains from China and Vietnam. The study provides an additional genomic data for LSDV tracking and control in China and neighboring countries.
Collapse
Affiliation(s)
- Yu-Rong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen-Ge Ma
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Wang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen Wang
- Center for Animal Disease Prevention and Control of Xinjiang, Urumqi, China
| | - Xiao-Hui Su
- Center for Animal Disease Prevention and Control of Xinjiang, Urumqi, China
| | - Xue-Yun Yang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiao-Yun Mi
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jian-Yong Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jiong Huang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China,*Correspondence: Jiong Huang ✉
| |
Collapse
|
7
|
Ratyotha K, Prakobwong S, Piratae S. Lumpy skin disease: A newly emerging disease in Southeast Asia. Vet World 2022; 15:2764-2771. [PMID: 36718323 PMCID: PMC9880836 DOI: 10.14202/vetworld.2022.2764-2771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lumpy skin disease (LSD) is caused by LSD virus (LSDV). This virus has been classified in the genus Capripoxvirus, family Poxviridae which generally affects large ruminants, especially cattle and domestic water buffalo. The first outbreak of LSD was found in 1929 in Zambia, then spreading throughout Africa and with an ongoing expanding distribution to Asia and Europe. In 2020, LSD was found from Southeast Asia in Vietnam and Myanmar before reaching Thailand and Laos in 2021. Therefore, LSD is a newly emerging disease that occurs in Southeast Asia and needs more research about pathology, transmission, diagnosis, distribution, prevention, and control. The results from this review show the nature of LSD, distribution, and epidemic maps which are helpful for further information on the control and prevention of LSD.
Collapse
Affiliation(s)
- Kanokwan Ratyotha
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Suksanti Prakobwong
- Department of Biology, The Parasitology, Geoinformatics, Environment and Health Science Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Supawadee Piratae
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand,One Health Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand,Corresponding author: Supawadee Piratae, e-mail: Co-authors: KR: , SukP:
| |
Collapse
|
8
|
Khalafalla A. Lumpy Skin Disease: An Economically Significant Emerging Disease. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lumpy skin disease (LSD) is a severe viral disease of cattle caused by the lumpy skin disease virus (LSDV), a member of the Capripoxvirus genus of the poxviridae family. Fever and flat disk-like skin nodules on the skin characterize the disease. It can also lead to death and significant economic losses, especially in herds, that have never been exposed to the virus. Blood-feeding insects, such as specific types of flies, mosquitoes, and ticks, are thought to be the primary vectors of LSDV transmission. Most African and middle eastern countries have a high prevalence of lumpy skin disease. The disease extended to southeast Europe, the Balkans, and the Caucasus in 2015 and 2016 and is still spreading throughout Asia. The World Organization for Animal Health [WOAH] has designated LSD as a notifiable illness due to the likelihood of fast transmission. The rapid spread of disease in formerly disease-free areas emphasizes the need to know the disease epidemiology and the virus’s interaction with its host. This chapter aims to provide the latest developments in the etiology, epidemiology, diagnosis, and control of LSD.
Collapse
|