1
|
Chen Y, Gao J, Hua R, Zhang G. Pseudorabies virus as a zoonosis: scientific and public health implications. Virus Genes 2024:10.1007/s11262-024-02122-2. [PMID: 39692808 DOI: 10.1007/s11262-024-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024]
Abstract
Pseudorabies virus (PRV) is a herpes virus, also known as Aujeszky's disease virus (ADV), which can cause a highly infectious disease pseudorabies (PR) in a variety of mammals. In the past, it has been debated whether PRV can infect humans, but more and more cases of PRV infection have been reported since 2017. The illness has claimed many victims and left survivors with serious sequelae. This indicates that humans may ignore the zoonotic ability of PRV. This review aims to summarize the pathology and pathogenesis of PRV and speculate on how it infects humans. This paper provides a comprehensive overview of the progression of PRV, including its virology characteristics, genomic organization, and genetic evolution. It also synthesises the existing literature on PRV infection in humans, and analyses the factors contributing to PRV zoonosis. Finally, the pathogenesis of PRV-infected pigs and other mammals was summarized, and the pathogenesis of PRV-infected humans was speculated.
Collapse
Affiliation(s)
- Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Jie Gao
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Rongqian Hua
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China.
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Zhang HL, Zhang RH, Liu G, Li GM, Wang FX, Wen YJ, Shan H. Evaluation of immunogenicity of gene-deleted and subunit vaccines constructed against the emerging pseudorabies virus variants. Virol J 2023; 20:98. [PMID: 37221518 DOI: 10.1186/s12985-023-02051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pseudorabies (PR) (also called Aujeszky's disease, AD) is a serious infectious disease affecting pigs and other animals worldwide. The emergence of variant strains of pseudorabies virus (PRV) since 2011 has led to PR outbreaks in China and a vaccine that antigenically more closely matches these PRV variants could represent an added value to control these infections. METHODS The objective of this study was to develop new live attenuated and subunit vaccines against PRV variant strains. Genomic alterations of vaccine strains were based on the highly virulent SD-2017 mutant strain and gene-deleted strains SD-2017ΔgE/gI and SD-2017ΔgE/gI/TK, which constructed using homologous recombination technology. PRV gB-DCpep (Dendritic cells targeting peptide) and PorB (the outer membrane pore proteins of N. meningitidis) proteins containing gp67 protein secretion signal peptide were expressed using the baculovirus system for the preparation of subunit vaccines. We used experimental animal rabbits to test immunogenicity to evaluate the effect of the newly constructed PR vaccines. RESULTS Compared with the PRV-gB subunit vaccine and SD-2017ΔgE/gI inactivated vaccines, rabbits (n = 10) that were intramuscularly vaccinated with SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine showed significantly higher anti-PRV-specific antibodies as well as neutralizing antibodies and IFN-γ levels in serum. In addition, the SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine protected (90-100%) rabbits against homologous infection by the PRV variant strain. No obvious pathological damage was observed in these vaccinated rabbits. CONCLUSIONS The SD-2017ΔgE/gI/TK live attenuated vaccine provided 100% protection against PRV variant challenge. Interestingly, the subunit vaccines with gB protein linked to DCpep and PorB protein as adjuvant may also be a promising and effective PRV variant vaccine candidate.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Rui-Hua Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Gang Liu
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Gui-Mei Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Feng-Xue Wang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Yong-Jun Wen
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Hu Shan
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
3
|
Zhang T, Liu Y, Chen Y, Wang A, Feng H, Wei Q, Zhou E, Zhang G. A single dose glycoprotein D-based subunit vaccine against pseudorabies virus infection. Vaccine 2020; 38:6153-6161. [PMID: 32741670 DOI: 10.1016/j.vaccine.2020.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023]
Abstract
Pseudorabies Virus (PRV) is the causative agent of Pseudorabies (PR), also known as Aujeszky's Disease, one of the most important infectious diseases in swine, resulting in huge economic losses to the swine industry globally. The emergence of mutant PRV strains after 2011 resulted in a sharp decrease in the efficacy of available commercial vaccines. To develop a more effective vaccine that can prevent the spread of PRV, glycoprotein B (gB), glycoprotein C (gC) and glycoprotein D (gD) from recent PRV isolates were expressed in a baculovirus system and their protective efficacy was tested in mice and piglets. Neutralizing antibody titers (NAs) in mice vaccinated with gB, gC and gD peaked at 28 days after immunization and then slowly declined. NAs in the mice immunized with gD were remarkably higher than other groups. After a lethal challenge of 5 LD50 with mutant PRV-HNLH strain, the survival rates of gB and gD were 100% and 87.5% respectively, which was significantly higher than gC group (50%). Piglets vaccinated with the gD and gB + D vaccines developed the highest NAs 7 days post immunization. No piglets in these two groups exhibited clinical symptoms, high body temperature or virus shedding following challenge with 106.6 TCID50 with the mutant PRV-HNLH strain. Histopathology and immunohistochemistry showed remarkably reduced pathological damage and viral loads in gD and gB + D groups. Furthermore, the duration of the NAs induced by gD vaccine could maintain as long as four months after a single dose. The current study indicates that a gD-based vaccine could be developed for the efficient control of PRV.
Collapse
Affiliation(s)
- Teng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Li J, Li X, Hao G, Zhang H, Yang H, Chen H, Qian P. Fusion of pseudorabies virus glycoproteins to IgG Fc enhances protective immunity against pseudorabies virus. Virology 2019; 536:49-57. [PMID: 31400549 DOI: 10.1016/j.virol.2019.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 01/29/2023]
Abstract
Molecular adjuvants are vaccine delivery vehicle to increase specific antigens effectiveness. Herein, we concentrated on IgG Fc, an effective molecular adjuvant, to develop novel pseudorabies virus (PRV) subunit vaccines. Two major protective antigen genes of PRV were constructed and linked into the mouse IgG Fc fragment. The gD, gD-IgG2aFc, gB and gB-IgG2aFc proteins were expressed using a baculovirus system. Mice intranasally immunized with gD-IgG2aFc or gB-IgG2aFc subunit vaccine exhibited significantly higher PRV-specific antibodies, neutralizing antibodies and intracellular cytokines than the mice intranasally immunized with gD or gB subunit vaccine. Moreover, no histopathological lesions were observed in mice immunized with gB-IgG2aFc subunit vaccine via histopathology examination. Further, the gB-IgG2aFc subunit vaccine was efficient for PRV infection compared with live attenuated vaccine. Overall, these results suggest that IgG2a Fc fragment, as a potential molecular adjuvant, fused with PRV antigen might be a promising and efficient PRV vaccine candidate.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huiling Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Zhang C, Liu Y, Chen S, Qiao Y, Guo M, Zheng Y, Xu M, Wang Z, Hou J, Wang J. A gD&gC-substituted pseudorabies virus vaccine strain provides complete clinical protection and is helpful to prevent virus shedding against challenge by a Chinese pseudorabies variant. BMC Vet Res 2019; 15:2. [PMID: 30606159 PMCID: PMC6318912 DOI: 10.1186/s12917-018-1766-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023] Open
Abstract
Background Since 2011, pseudorabies caused by a variant PRV has re-emerged in many Chinese Bartha-K61-vaccinated pig farms. An efficacious vaccine is necessary to control this disease. We described the construction of a gD&gC-substituted pseudorabies virus (PRV B-gD&gCS) from the Bartha-K61 (as backbone) and AH02LA strain (as template for gD and gC genes) through bacterial artificial chromosome (BAC) technology using homologous recombination. The growth kinetics of PRV B-gD&gCS was compared with Bartha-K61. Its safety was evaluated in 28-day-old piglets. Protection efficacy was tested in piglets by lethal challenge with AH02LA at 7 days post vaccination, including body temperature, clinical symptoms, virus shedding, mortality rate, and lung lesions. Results The results showed that a BAC clone of Bartha-K61 and a B-gD&gCS clone were successfully generated. The growth kinetics of PRV B-gD&gCS strain on ST (Swine testicular) cells was similar to that of the Bartha-K61 strain. No piglets inoculated intramuscularly with PRV B-gD&gCS strain exhibited any clinical symptoms or virus shedding. After AH02LA challenge, all piglets in PRV B-gD&gCS and Bartha-K61 groups (n = 5 each) survived without exhibiting any clinical symptoms and high body temperature. More importantly, PRV B-gD&gCS strain completely prevented virus shedding in 2 piglets and reduced virus shedding post challenge in the other 3 piglets as compared with Bartha-K61 group. Conclusions Our results suggest that PRV B-gD&gCS strain is a promising vaccine candidate for the effective control of current severe epidemic pseudorabies in China.
Collapse
Affiliation(s)
- Chuanjian Zhang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yamei Liu
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Saisai Chen
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yongfeng Qiao
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Mingpeng Guo
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yating Zheng
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Mengwei Xu
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jibo Hou
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jichun Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Sozzi E, Moreno A, Lelli D, Cinotti S, Alborali GL, Nigrelli A, Luppi A, Bresaola M, Catella A, Cordioli P. Genomic Characterization of Pseudorabies Virus Strains Isolated in Italy. Transbound Emerg Dis 2013; 61:334-40. [DOI: 10.1111/tbed.12038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Indexed: 11/29/2022]
Affiliation(s)
- E. Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - A. Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - D. Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - S. Cinotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - G. L. Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - A. Nigrelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - A. Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - M. Bresaola
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - A. Catella
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| | - P. Cordioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER); Brescia Italy
| |
Collapse
|
7
|
Katayama S, Oda K, Ohgitani T. Influence of antigenic forms and adjuvants on protection against a lethal infection of Aujeszky's disease virus. Vaccine 2000; 19:54-8. [PMID: 10924786 DOI: 10.1016/s0264-410x(00)00150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of antigenic forms and adjuvant types on protection against a lethal infection of Aujeszky's disease virus (ADV) in mice was investigated. Antiviral IgG2a antibody response against particulate (inactivated ADV) and soluble antigen (ADV solubilized with deoxychorate-Na) in approximate order of extent was ISA70>QS-21>positively charged liposome>negatively charged liposome>weak negatively charged liposome>ISA25>lablabside F saponin>aluminum phosphate gel>non adjuvant. Particulate antigen induced higher IgG2a antibody production than soluble antigen. Particulate antigen combined with ISA70, ISA25 or positively charged liposome gave 100, 50 and 40% protection to mice, respectively. In contrast, soluble antigen plus ISA70 conferred 30% protection on mice. Immunogens using the other adjuvants gave </=20% protection to mice. These results indicate that a combination of particulate antigen and an appropriate adjuvant effectively induces the production of antiviral IgG2a antibody and provides protection against a lethal ADV infection in mice.
Collapse
Affiliation(s)
- S Katayama
- Division of Veterinary Microbiology, Kyoto Biken Laboratories, 24-16 Makishima-cho, Kyoto 611-0041, Uji, Japan
| | | | | |
Collapse
|
8
|
Ober BT, Teufel B, Wiesmüller KH, Jung G, Pfaff E, Saalmüller A, Rziha HJ. The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. J Virol 2000; 74:1752-60. [PMID: 10644346 PMCID: PMC111651 DOI: 10.1128/jvi.74.4.1752-1760.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1999] [Accepted: 11/22/1999] [Indexed: 11/20/2022] Open
Abstract
High titers of virus-neutralizing antibodies directed against glycoprotein gC of Pseudorabies virus (PRV) (Suid herpesvirus 1) are generally observed in the serum of immunized pigs. A known function of the glycoprotein gC is to mediate attachment of PRV to target cells through distinct viral heparin-binding domains (HBDs). Therefore, it was suggested that the virus-neutralizing activity of anti-PRV sera is directed against HBDs on gC. To address this issue, sera with high virus-neutralizing activity against gC were used to characterize the anti-gC response. Epitope mapping demonstrated that amino acids of HBDs are part of an antigenic antibody binding domain which is located in the N-terminal part of gC. Binding of antibodies to this antigenic domain of gC was further shown to interfere with the viral attachment. Therefore, these results show that the viral HBDs are accessible targets for the humoral anti-PRV response even after tolerance induction against self-proteins, which utilize similar HBDs to promote host protein-protein interactions. The findings indicate that the host's immune system can specifically block the attachment function of PRV gC. Since HBDs promote the attachment of a number of herpesviruses, the design of future antiherpesvirus vaccines should aim to induce a humoral immune response that prevents HBD-mediated viral attachment.
Collapse
Affiliation(s)
- B T Ober
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, D-72 076 T]ubingen, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Katayama S, Oda K, Ohgitani T, Hirahara T, Shimizu Y. Influence of antigenic forms and adjuvants on the IgG subclass antibody response to Aujeszky's disease virus in mice. Vaccine 1999; 17:2733-9. [PMID: 10418925 DOI: 10.1016/s0264-410x(98)00499-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of antigenic forms of Aujeszky's disease virus (ADV) and adjuvant types on the production of IgG subclass antibodies in mice was investigated. Particulate antigen, inactivated ADV, alone induced IgG1 and lower IgG2a antibody production, while the antigen adsorbed onto aluminum phosphate gel (alum) enhanced IgG1 antibody production but suppressed IgG2a antibody production as well as solubilized ADV antigen adsorbed onto alum. QS21 saponin purified from Quillaja saponaria promoted the production of IgG1 and IgG2a antibodies in a large extent against the both particulate and soluble antigens, while this saponin has strong hemolytic activity. Lablaboside F saponin isolated from Dolichos lablab without hemolytic activity, also induced the production of large IgG1 and little IgG2a antibody against both antigens. Oil-based adjuvant, ISA70 of water-in-oil type and ISA25 of oil-in-water type, increased IgG1 and IgG2a antibodies against the both soluble and particulate antigens, whereas a combination of ISA25 and soluble antigen reduced IgG2a antibody response. These results indicate that IgG1 antibody production was not suppressed by a combination of antigenic form and adjuvant type, however, IgG2a antibody production was influenced.
Collapse
Affiliation(s)
- S Katayama
- Division of Veterinary Microbiology, Kyoto Biken Laboratories, Uji, Japan
| | | | | | | | | |
Collapse
|
10
|
Katayama S, Yamanaka M, Ota S, Shimizu Y. A new quantitative method for rabies virus by detection of nucleoprotein in virion using ELISA. J Vet Med Sci 1999; 61:411-6. [PMID: 10342293 DOI: 10.1292/jvms.61.411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a new quantitative method for rabies virus (RV) detection using enzyme-linked immunosorbent assay (ELISA). The method named N-ELISA was based on the quantitation of nucleoprotein (N) in RV virions captured by RV-specific polyclonal antibodies on an ELISA plate. Both infective and defective interfering (DI) particles of RV could be detected by this method. When viruses were propagated in a medium of pH 7.4 adjusted with 7% NaHCO3, N-ELISA could detect them with titers of more than 10(6) pfu/ml, though the result did not correlate highly with that of the infectivity assay. The reason for this was considered to be that RVs included spikeless and damaged particles which were produced under conditions of low or high pH. However, in the time course of virus yield, titers of N-ELISA correlated well with those of the infectivity assay.
Collapse
|
11
|
Katayama S, Okada N, Ohgitani T, Kokubu T, Shimizu Y. Influence of cell surface glycoprotein gC produced by pseudorabies virus on cytopathic effect. J Vet Med Sci 1998; 60:905-9. [PMID: 9764402 DOI: 10.1292/jvms.60.905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The wild-type pseudorabies virus (WT-PRV) produced a round-type cytopathic effect (CPE) in PK-15 cell line of porcine kidney origin, while PRVgCs lacking in gC-transmembrane-anchor region and PRVgC-defecting in gC gene produced a syncytium-type CPE. The mouse embryo cell line (BALB/3T3 clone A31) were transfected with recombinant plasmid of pcDNA3 which incorporated with gC gene. The transfected A31/gC cells were stably expressing gC. Only a round-type CPE was observed in these cells infected with WT-PRV, while a syncytium-type CPE was observed in the cells infected with each of the PRVgCs and PRVgC-. Any viruses described above induced a syncytium-type CPE in A31/pcDNA cells transfected with a plasmid without gC gene. By WT-PRV infection, PK-15 cells generated about 2- or 8-fold more gC than the A31/gC and A31/pcDNA cells when gC was measured by hemagglutination test. Flowcytometric analysis revealed that amount of gC on the cell surface of A31/gC and PK-15 cells increased after infection with WT-PRV. Round-type CPE was observed with the increase of gC. These results suggest that the type of CPE formation induced by PRV is dominated by the amount of gC on the infected cell surface.
Collapse
Affiliation(s)
- S Katayama
- Division of Veterinary Microbiology, Kyoto Biken Laboratories, Japan
| | | | | | | | | |
Collapse
|