1
|
van Vliet S, Blair AD, Hite LM, Cloward J, Ward RE, Kruse C, van Wietmarchsen HA, van Eekeren N, Kronberg SL, Provenza FD. Pasture-finishing of bison improves animal metabolic health and potential health-promoting compounds in meat. J Anim Sci Biotechnol 2023; 14:49. [PMID: 37004100 PMCID: PMC10067211 DOI: 10.1186/s40104-023-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum). RESULTS Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial. CONCLUSIONS Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA.
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA.
| | - Amanda D Blair
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Lydia M Hite
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Jennifer Cloward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Robert E Ward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Carter Kruse
- Turner Institute of Ecoagriculture, Bozeman, MT, 59718, USA
| | | | | | - Scott L Kronberg
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| | - Frederick D Provenza
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| |
Collapse
|
2
|
Onaga T, Hayashi H, Yasui Y. Effects of xenin-25 on insulin and glucagon secretions in healthy conscious sheep. Domest Anim Endocrinol 2021; 77:106635. [PMID: 34111624 DOI: 10.1016/j.domaniend.2021.106635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The aim of present study was to determine effect of an intravenous injection of xenin-25 on insulin and glucagon secretion in healthy conscious sheep. After feeding once at 17:00, the experiment was started from 9:00 on the next day. Xenin-25 was intravenously (i.v.) injected at a dose of 100 to 1000 pmol/kg with and without the simultaneous injection of glucose at a dose of 200 μmol/kg, and blood was withdrawn before and after the injections. A single xenin-25 injection at 100 and 300 pmol/kg significantly increased the plasma insulin concentration, whereas the 1000 pmol/kg dose did not elicit significantly enhanced insulin response. Plasma glucose and glucagon concentrations did not significantly change after a single xenin-25 injection. Xenin-25 injection significantly and dose-dependently augmented the glucose-induced insulin secretion. However, the changes in the plasma glucose and glucagon level after the glucose injection were not altered by xenin injection. A prior intravenous injection of the neurotensin receptor subtype-1 (NTR-1) antagonist SR 48692 at 100 nmol/kg did not modify the glucose-induced change in plasma insulin caused by xenin-25 at 300 pmol/kg, and intravenous injection of the NTR-2 agonist levocabastine at 1000 pmol/kg did not augment the insulin response to the glucose injection. On the other hand, no xenin-25 immunopositive cells were detected in the ovine pancreas. The mRNAs of the three NTR subtypes were highly expressed in the ovine pancreas in comparison with the expression in the abomasum. These results suggest that xenin-25 released from the upper gastrointestinal tract plays a role of an insulinotropic factor in sheep, possibly through NTRs in the pancreatic islets, but not via NTR-2.
Collapse
Affiliation(s)
- Takenori Onaga
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan.
| | - Hideaki Hayashi
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Yumiko Yasui
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
3
|
Wan X, Lei Y, Li Z, Wang J, Chen Z, McNutt M, Lin D, Zhao C, Jiang C, Li J, Pu Q, Su M, Wang Y, Gu J. Pancreatic Expression of Immunoglobulin G in Human Pancreatic Cancer and Associated Diabetes. Pancreas 2015; 44:1304-13. [PMID: 26390427 DOI: 10.1097/mpa.0000000000000544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The prognosis of pancreatic cancer (PC) is poor and the pathogenesis of PC-associated diabetes is unknown. We investigated the possible expression of immunoglobulin G (IgG) in human pancreatic carcinomas and adjacent pancreatic islets to gain a better understanding of these diseases. METHODS We employed immunohistochemistry, Western Blot, real-time polymerase chain reaction, and in situ hybridization to examine IgG expression in PC tissues and adjacent islets with and without cancer-associated diabetes. The IgG mRNA and IgG synthesizing-related enzymes were examined in PC cell lines. The IgG expression and secretion were downregulated with specific small interfering RNA and antibody to IgG followed by flow cytometry to assess its effect on apoptosis of cultured PC cells. RESULTS The expression of IgG was detected in pancreatic carcinoma and adjacent islets. Small interfering RNA and antibody treatments induced apoptosis in PC cell lines. In the carcinoma tissue, the levels of IgG expression varied depending on the stages of the cancers with more malignant cancers expressing more IgG (P < 0.05). The IgG levels in cancer cells were also increased when the patients had diabetes or hyperglycemia (P < 0.05). In addition, the extent of IgG expression in the seemingly normal islet cells adjacent to the tumor varied in relation to the grade of cancer differentiation and distance to the cancer nests. CONCLUSIONS (1) Immunoglobulin G was locally produced by PC cells and adjacent islet cells. (2) Immunoglobulin G may promote tumor growth by inhibiting cancer cell apoptosis. (3) Locally produced IgG might play a role in PC-associated diabetes.
Collapse
Affiliation(s)
- Xia Wan
- From the *Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong; †Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yatoo M, Deepa P, Mandal R, Sharma B, Mendiratta S, Patel B, Dimri U. Prevalence of subclinical diabetes in a commercial flock of dairy goats in India and its interaction with milk quality. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Joshi DV, Patil RR, Naik SR. Hydroalcohol extract of Trigonella foenum-graecum seed attenuates markers of inflammation and oxidative stress while improving exocrine function in diabetic rats. PHARMACEUTICAL BIOLOGY 2015; 53:201-211. [PMID: 25339548 DOI: 10.3109/13880209.2014.913296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT AND OBJECTIVE The herb fenugreek, Trigonella foenum-graecum Linn (Fabaceae), seeds have been traditionally used in the treatment of diabetes but its effect on oxidative stress and pro-inflammatory cytokines in the improvement of exocrine function of diabetes has not been studied. The effect of hydroalcoholic extract of Trigonella foenum-graecum seeds (HEF) on alloxan-induced type-II diabetic rat model was investigated. MATERIALS AND METHODS Effect of HEF (500, 1000, and 2000 mg/kg), glimepiride (4 mg/kg), and combination of HEF (500 mg/kg) + glimepiride (2 mg/kg), on alloxan-induced diabetic rats was evaluated by assaying (blood glucose, serum protein, glycosylated hemoglobin, muscle and liver glycogen, glucose uptake by diaphragm, liver glucose transport, serum pancreatic enzymes (α-amylase, lipase), pro-inflammatory cytokines (TNF-α, IL-6), antioxidant enzymes [glutathione (GSH), superoxide dismutase (SOD)], lipid peroxides (liver and pancreas), and histoarchitecture (liver, pancreas). RESULTS Treatment with HEF (at different doses), glimepiride, and HEF + glimepiride increased body weight and glucose uptake, reduced plasma glucose, glycosylated hemoglobin, liver glucose transport, pro-inflammatory cytokines, pancreatic enzymes and restored depleted glycogen (muscle, liver) and total protein significantly (p < 0.01) and dose dependently, including prevention of lipid peroxidation and restoration of GSH and SOD (liver and pancreas). Treatment with HEF + glimepiride potentiated hypoglycemic activity of glimepiride. Histoarchitecture of liver and pancreas showed marked improvement. CONCLUSION Present experimental findings suggest that HEF possesses promising hypoglycemic activity, presumably by amelioration of oxidative stress and pro-inflammatory cytokines. HEF may be useful as an adjuvant with clinically effective antidiabetic drugs in the management of type-II diabetes.
Collapse
Affiliation(s)
- Deval V Joshi
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Science , Lonavala, Pune, Maharashtra , India
| | | | | |
Collapse
|
6
|
Rodríguez-Castelán J, Martínez-Gómez M, Castelán F, Cuevas E. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits. Int J Endocrinol 2015; 2015:917806. [PMID: 26175757 PMCID: PMC4484561 DOI: 10.1155/2015/917806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.
Collapse
Affiliation(s)
- Julia Rodríguez-Castelán
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Unidad Periférica, 90070 Tlaxcala, TLAX, Mexico
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Estela Cuevas
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- *Estela Cuevas:
| |
Collapse
|
7
|
Alteration in clinico-biochemical profile and oxidative stress indices associated with hyperglycaemia with special reference to diabetes in cattle--a pilot study. Trop Anim Health Prod 2014; 47:103-9. [PMID: 25433646 DOI: 10.1007/s11250-014-0691-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/30/2014] [Indexed: 12/28/2022]
Abstract
The present study aimed to assess hyperglycaemia with special reference to diabetes mellitus in cattle by clinico-biochemical estimation and evaluation of oxidative stress indices. A total of 256 cattle exhibiting weakness, poor body condition and reduced milk yield in lactating cattle were included in the study. These animals were screened with blood glucose level, urine glucose and ketone bodies. Out of these, 32 (12.5%) cattle showed hyperglycaemia and glycosuria, of which 25% exhibited ketonuria. Diabetes was confirmed in five cattle by estimation of fasting blood glucose, glycated haemoglobin, serum fructosamine, intravenous glucose tolerance test and insulin level. This reports first confirmation of diabetes in cattle in India. All these five animals revealed low level of serum insulin suggestive of insulin-dependent diabetes mellitus in cattle. The level of aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) was found to be increased in diabetic cattle. Oxidant/antioxidant balance was assessed in hyperglycaemic cattle and five age-matched Holstein Friesian (HF) cross-bred healthy control animals. Diabetic cattle revealed significantly higher (P ≤ 0.01) levels of erythrocytic lipid peroxides in comparison with other hyperglycaemic cattle and healthy controls whereas the level of superoxide dismutase (SOD) and catalase was found to be significantly lower in diabetes-affected animals in comparison to healthy controls. Reduced glutathione did not show a significant difference between hyperglycaemic and control groups. It is concluded from the present study that oxidative stress associated with diabetes in cattle is obvious compared with other hyperglycaemic cattle.
Collapse
|
8
|
Improvement of insulin response in the streptozotocin model of insulin-dependent diabetes mellitus. Insulin response with and without a long-acting insulin treatment. Animal 2012; 3:685-9. [PMID: 22444446 DOI: 10.1017/s175173110800387x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptozotocin-induced diabetes mellitus (STZ-DM) in rats is a model of type 1 diabetes, which is commonly used to study diabetes, but differs from human diabetic pathophysiology in its insulin resistance. An STZ-DM rat can be administered five times the dose of insulin compared to that of a diabetic patient. Thus, attaining normoglycaemia in STZ-DM rats with insulin injections is complicated, and it involves an obvious risk of overdosing before getting a response. This study was designed to investigate whether suboptimal treatment with long-acting insulin restores insulin sensitivity in the STZ-DM rat, and thus an approach to more closely mimic the human condition. Male Sprague-Dawley rats were made diabetic by means of a single intravenous injection of STZ (55 mg/kg body weight (BW)), resulting in an increase in blood glucose (BG) from 6.5 ± 0.2 to 22.5 ± 1.0 mmol/l (P 0.05) within 24 h. After treating the STZ-DM rats with vehicle for 14 days, BG was 26.1 ± 1.1 mmol/l, and the response to a single injection of fast-acting insulin (Humalog, 5 IE/kg BW) was a 23% reduction in BG. Thereafter, the rats were treated daily with a suboptimal dose of long-acting insulin for a total of 7 days (Insulatard, 5 IE/kg per day), which resulted in a BG level of 19.4 ± 2.7. The response to fast-acting insulin after the suboptimal treatment was a 61% reduction in BG. Thereafter, the animals were vehicle-treated for another 7 days, which resulted in a response to fast-acting insulin similar to the initial values (-34%). Furthermore, the group treated with suboptimal doses of long-acting insulin had a longer duration of the reduction in BG (150 min, as opposed to 90 min in the vehicle-treated groups). We conclude that the development of a decreased insulin response occurs rapidly within the first 2 weeks after the onset of diabetes in STZ-DM rats. This leads to a brief and significantly reduced decrease in BG when fast-acting insulin is administered. The insulin response is increased by treatment with suboptimal doses of long-acting insulin, but rapidly decreases again when treatment is withdrawn. Regular administration of suboptimal insulin doses may provide an approach to eliminate the effects of a lowered insulin response.
Collapse
|
9
|
Shankaraia P, Reddy Y. α-amylase Expressions in Indian Type-2 Diabetic Patients. JOURNAL OF MEDICAL SCIENCES 2011. [DOI: 10.3923/jms.2011.280.284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
11
|
TAKASU M, OHBA Y, IGUCHI T, NISHII N, MAEDA S, KITAGAWA H. Propionate Tolerance Test for Determination of Insulin Secretion in a Hyperglycemic japanese Black Steer. J Vet Med Sci 2007; 69:985-7. [DOI: 10.1292/jvms.69.985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Masaki TAKASU
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Yasunori OHBA
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Tomonori IGUCHI
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Naohito NISHII
- Department of Clinical Veterinary Medicine, United Graduate School of Veterinary Sciences, Gifu University
| | - Sadatoshi MAEDA
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Hitoshi KITAGAWA
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
12
|
Abstract
Diabetes mellitus is a common disease in cats and dogs. Its incidence is increasing, possibly due to an increase in obesity in both species. Different types of diabetes have been identified in pet animals. The classification of diabetic dogs and cats is modeled after the human classification but especially in the diabetic dogs, many aspects are different. The diabetic cat, however, resembles type 2 diabetic human patients more closely. The clinical presentation, pathophysiology, and histologic findings are described for both dog and cat and possible etiological mechanisms are discussed.
Collapse
Affiliation(s)
- M Hoenig
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|