1
|
Gul S, Durante-Mangoni E. Unraveling the Puzzle: Health Benefits of Probiotics-A Comprehensive Review. J Clin Med 2024; 13:1436. [PMID: 38592298 PMCID: PMC10935031 DOI: 10.3390/jcm13051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
A growing number of probiotic-containing products are on the market, and their use is increasing. Probiotics are thought to support the health of the gut microbiota, which in turn might prevent or delay the onset of gastrointestinal tract disorders. Obesity, type 2 diabetes, autism, osteoporosis, and some immunological illnesses are among the conditions that have been shown to possibly benefit from probiotics. In addition to their ability to favorably affect diseases, probiotics represent a defense system enhancing intestinal, nutritional, and oral health. Depending on the type of microbial strain utilized, probiotics can have variable beneficial properties. Although many microbial species are available, the most widely employed ones are lactic acid bacteria and bifidobacteria. The usefulness of these bacteria is dependent on both their origin and their capacity to promote health. Probiotics represent a valuable clinical tool supporting gastrointestinal health, immune system function, and metabolic balance. When used appropriately, probiotics may provide benefits such as a reduced risk of gastrointestinal disorders, enhanced immunity, and improved metabolic health. Most popular probiotics, their health advantages, and their mode of action are the topic of this narrative review article, aimed to provide the reader with a comprehensive reappraisal of this topic matter.
Collapse
Affiliation(s)
- Sabiha Gul
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli—Ospedale Monaldi, Piazzale Ettore Ruggieri, 80131 Napoli, Italy
| |
Collapse
|
2
|
Hamabata T, Sato T, Takita E, Matsui T, Imaoka T, Nakanishi N, Nakayama K, Tsukahara T, Sawada K. Shiga toxin 2eB-transgenic lettuce vaccine is effective in protecting weaned piglets from edema disease caused by Shiga toxin-producing Escherichia coli infection. Anim Sci J 2019; 90:1460-1467. [PMID: 31502390 DOI: 10.1111/asj.13292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Porcine edema disease (ED) is a toxemia that is caused by enteric infection with Shiga toxin 2e (Stx2e)-producing Escherichia coli (STEC) and is associated with high mortality. Since ED occurs most frequently during the weaning period, preweaning vaccination of newborn piglets is required. We developed stx2eB-transgenic lettuce as an oral vaccine candidate against ED and examined its protective efficacy using a piglet STEC infection model. Two serially developed Stx2eB-lettuce strains, 2BN containing ingredient Stx2eB constituting a concentration level of 0.53 mg Stx2eB/g of powdered lettuce dry weight (DW) and 2BH containing ingredient Stx2eB constituting a concentration level of 2.3 mg of Stx2eB/g of powdered lettuce DW, were evaluated in three sequential experiments. Taken the results together, oral administration of Stx2eB-lettuce vaccine was suggested to relieve the pathogenic symptoms of ED in piglets challenged with virulent STEC strain. Our data suggested that Stx2eB-lettuce is a promising first oral vaccine candidate against ED.
Collapse
Affiliation(s)
- Takashi Hamabata
- National Center for Global Health and Medicine, Research Institute, Tokyo, Japan
| | - Toshio Sato
- National Center for Global Health and Medicine, Research Institute, Tokyo, Japan
| | - Eiji Takita
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| | | | | | - Keizo Nakayama
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Japan
| | | | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| |
Collapse
|
3
|
Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 2018; 148:149-154. [PMID: 29698757 DOI: 10.1016/j.toxicon.2018.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been implicated as the cause of enterotoxemias, such as hemolytic uremic syndrome in humans and edema disease (ED) of pigs. Stx1 and Stx2 are the most common types found in association with illness, but only Stx2e is associated with disease in the animal host. Porcine edema disease is a serious affection which can lead to dead causing great losses of weaned piglets. Stx2e is the most frequent Stx variant found in porcine feces and is considered the key virulence factor involved in the pathogenesis of porcine edema disease. Stx2e binds with higher affinity to Gb4 receptor than to Gb3 which could be due to amino acid changes in B subunit. Moreover, this subtype also binds to Forssman glycosphingolipids conferring upon Stx2e a unique promiscuous recognition feature. Manifestations of edema disease are caused by systemic effects of Stx2e with no significant morphologic changes in enterocytes. Endothelial cell necrosis in the brain is an early event in the pathogenesis of ED caused by Stx2e-producing STEC strains. Further studies are needed to generate techniques and tools which allow to understand the circulation and ecology of STEC strains in pigs even in resistant animals for diagnostic and epidemiological purposes.
Collapse
|
4
|
Miyamoto S, Komiya M, Fujii G, Hamoya T, Nakanishi R, Fujimoto K, Tamura S, Kurokawa Y, Takahashi M, Ijichi T, Mutoh M. Preventive Effects of Heat-Killed Enterococcus faecalis Strain EC-12 on Mouse Intestinal Tumor Development. Int J Mol Sci 2017; 18:ijms18040826. [PMID: 28406434 PMCID: PMC5412410 DOI: 10.3390/ijms18040826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 12/21/2022] Open
Abstract
Establishing effective methods for preventing colorectal cancer by so-called “functional foods” is important because the global burden of colorectal cancer is increasing. Enterococcus faecalis strain EC-12 (EC-12), which belongs to the family of lactic acid bacteria, has been shown to exert pleiotropic effects, such as anti-allergy and anti-infectious effects, on mammalian cells. In the present study, we aimed to evaluate the preventive effects of heat-killed EC-12 on intestinal carcinogenesis. We fed 5-week-old male and female Apc mutant Min mice diets containing 50 or 100 ppm heat-killed EC-12 for 8 weeks. In the 50 ppm treated group, there was 4.3% decrease in the number of polyps in males vs. 30.9% in females, and significant reduction was only achieved in the proximal small intestine of female mice. A similar reduction was observed in the 100 ppm treated group. Moreover, heat-killed EC-12 tended to reduce the levels of c-Myc and cyclin D1 mRNA expression in intestinal polyps. Next, we confirmed that heat-killed EC-12 suppressed the transcriptional activity of the T-cell factor/lymphoid enhancer factor, a transcriptional factor involved in cyclin D1 mRNA expression in intestinal polyps. Our results suggest that heat-killed EC-12 very weakly suppresses intestinal polyp development in Min mice, in part by attenuating β-catenin signaling, and this implies that heat-killed EC-12 could be used as a “functional food”.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masami Komiya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Gen Fujii
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takahiro Hamoya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Ruri Nakanishi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kyoko Fujimoto
- Division of Molecular Biology, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Shuya Tamura
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yurie Kurokawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Maiko Takahashi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Tetsuo Ijichi
- Combi Corporation, Functional Foods Division, 5-2-39, Nishibori, Sakura-ku, Saitama-shi, Saitama 338-0832, Japan.
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
5
|
Sato T, Hamabata T, Takita E, Matsui T, Sawada K, Imaoka T, Nakanishi N, Nakayama K, Tsukahara T. Improved porcine model for Shiga toxin-producing Escherichia coli infection by deprivation of colostrum feeding in newborn piglets. Anim Sci J 2017; 88:826-831. [PMID: 28145027 DOI: 10.1111/asj.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 11/27/2022]
Abstract
Porcine edema disease (ED) is a toxemia caused by enteric infection with Shiga toxin 2e (Stx2e)-producing Escherichia coli (STEC). ED occurs most frequently during the weaning period and is manifested as emaciation associated with high mortality. In our experimental infection with a specific STEC strain, we failed to cause the suppression of weight gain in piglets, which is a typical symptom of ED, in two consecutive experiments. Therefore, we examined the effects of deprivation of colostrum on the sensitivity of newborn piglets to STEC infection. Neonatal pigs were categorized into two groups: one fed artificial milk instead of colostrum in the first 24 h after birth and then returned to the care of their mother, the other breastfed by a surrogate mother until weaning. The oral challenge with 1011 colony-forming units of virulent STEC strain on days 25, 26 and 27 caused suppression of weight gain and other ED symptoms in both groups, suggesting that colostrum deprivation from piglets was effective in enhancing susceptibility to STEC. Two successive STEC infection experiments using colostrum-deprived piglets reproduced this result, leading us to conclude that this improved ED piglet model is more sensitive to STEC infection than the previously established models.
Collapse
Affiliation(s)
- Toshio Sato
- Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Eiji Takita
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Sodegaura, Chiba, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Sodegaura, Chiba, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Sodegaura, Chiba, Japan
| | | | | | - Keizo Nakayama
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Kyoto, Japan
| | | |
Collapse
|
6
|
Ebisawa M, Tsukahara T, Fudou R, Ohta Y, Tokura M, Onishi N, Fujieda T. Heat-killed cell preparation of Corynebacterium glutamicum stimulates the immune activity and improves survival of mice against enterohemorrhagic Escherichia coli. Biosci Biotechnol Biochem 2017; 81:995-1001. [PMID: 28137189 DOI: 10.1080/09168451.2017.1282804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fermentation by Corynebacterium glutamicum is used by various industries to produce L-Glutamate, and the heat-killed cell preparation of this bacterium (HCCG) is a by-product of the fermentation process. In present study, we evaluated the immunostimulating and survival effects against enterohemorrhagic Escherichia coli (STEC) infection of HCCG. HCCG significantly stimulated in vitro IgA and interleukin-12 p70 production in murine Peyer's patch cells and peritoneal macrophages, respectively. Oral administration of 10 mg/kg body weight (BW) of HCCG for seven consecutive days stimulated IgA concentration in murine cecal digesta. Mice were orally administered HCCG for 17 consecutive days (d0-d17), and challenged with STEC on d4 to d6. Survival of mice tended to improve by 100 mg/kg BW of HCCG administration compared with those in control group. In conclusion, HCCG supplementation was found to prevent STEC infection in mice, and thus it may have the potential to stimulate the immune status of mammals.
Collapse
|
7
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
The lactoferrin receptor may mediate the reduction of eosinophils in the duodenum of pigs consuming milk containing recombinant human lactoferrin. Biometals 2014; 27:1031-8. [DOI: 10.1007/s10534-014-9778-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/16/2014] [Indexed: 01/09/2023]
|
9
|
Rossi L, Dell'Orto V, Vagni S, Sala V, Reggi S, Baldi A. Protective effect of oral administration of transgenic tobacco seeds against verocytotoxic Escherichia coli strain in piglets. Vet Res Commun 2014; 38:39-49. [PMID: 24249478 DOI: 10.1007/s11259-013-9583-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 11/27/2022]
Abstract
The use of transgenic plants as delivery system for antigenic proteins is attractive for its simplicity and increases likelihood for local immune response at sites of infection. The aim of this study was to evaluate the protective effect of oral administration of tobacco seeds, expressing the FedA, the major protein of the F18 adhesive fimbriae, and B subunit of verocytotoxin, against verocytotoxin-producing E. coli (VTEC) strain in piglets. Forty-three early weaned piglets, were randomly divided into 4 experimental groups: 3 test groups and a control. Treatment groups orally received a bolus, with different dose of tobacco seeds on 0, 1, 2, 14 days post primary administration. After challenge, with 1*10(10) CFU of O138 Escherichia coli strain, piglets showed clinical scores significantly higher in the control group compared to orally immunized groups (P < 0.05) and the latter showed a faster recovery than in CG. In conclusion, oral administration of recombinant tobacco seeds expressing antigenic proteins against VTEC strains can induce a protective effect against challenger strain in piglets.
Collapse
Affiliation(s)
- Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università di Milano, Via Celoria 10, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
10
|
Tsukahara T, Tsuruta T, Nakanishi N, Hikita C, Mochizuki M, Nakayama K. The preventive effect of Bacillus subtilus strain DB9011 against experimental infection with enterotoxcemic Escherichia coli in weaning piglets. Anim Sci J 2012; 84:316-21. [PMID: 23590505 DOI: 10.1111/asj.12003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Porcine edema disease (ED) is caused by Shiga toxin 2e-producing Escherichia coli (STEC). Post-weaned piglets often suffer from ED as a result of intestinal infection with STEC, which causes impaired growth performance and high mortality. Antimicrobial therapy is a curative treatment for piglets infected with STEC, but the emergence of antimicrobial-resistant STEC has become a serious problem for Japanese pig farmers. Therefore, an alternative strategy other than antimicrobial therapy is needed for the prevention or treatment of ED. In this study, we evaluated the effect of oral administration of Bacillus subtilis DB9011 (DB9011) to prevent the experimental infection of STEC in weaning piglets. Eight 21-day-old piglets were divided into two groups: STEC challenge with the basal diet, and STEC challenge with DB9011 supplemented diet. The challenge was carried out when the animals were 25, 26 and 27 days old using STEC contained in capsules resistant against gastric digestion. All pigs were euthanized at 36 days of age. DB9011 improved the symptoms of ED and decreased the number of STEC in the ileal digesta and feces. Accordingly, oral administration of DB9011 in weaned piglets prevents ED through the suppression of the growth of STEC in the ileum.
Collapse
Affiliation(s)
- Takamitsu Tsukahara
- Kyoto Institute of Nutrition and Pathology, Uji-tawara, Kyoto 610-0231, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Inoue R, Nagino T, Hoshino G, Ushida K. Nucleic acids of Enterococcus faecalis strain EC-12 are potent Toll-like receptor 7 and 9 ligands inducing interleukin-12 production from murine splenocytes and murine macrophage cell line J774.1. ACTA ACUST UNITED AC 2010; 61:94-102. [DOI: 10.1111/j.1574-695x.2010.00752.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Tsukahara T, Inoue R, Shimojo N, Nakayama K, Saito S, Sato T, Itoh T, Fujita K, Ushida K. Alpha-Linked Galactooligosaccharide Suppresses Small Intestinal Eosinophil Infiltration and Improves Growth Performance in Weaning Pigs. J Vet Med Sci 2010; 72:547-53. [DOI: 10.1292/jvms.09-0462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takamitsu Tsukahara
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo. kyoto. Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
TSURUTA T, INOUE R, TSUKAHARA T, MATSUBARA N, HAMASAKI M, USHIDA K. A cell preparation ofEnterococcus faecalisstrain EC-12 stimulates the luminal immunoglobulin A secretion in juvenile calves. Anim Sci J 2009; 80:206-11. [DOI: 10.1111/j.1740-0929.2008.00621.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|