1
|
Park JS, Seo JH, Jeong MY, Yang IG, Kim JS, Kim JH, Ho MJ, Jin SG, Choi MK, Choi YS, Kang MJ. Carboxymethyl cellulose-based rotigotine nanocrystals-loaded hydrogel for increased transdermal delivery with alleviated skin irritation. Carbohydr Polym 2024; 338:122197. [PMID: 38763711 DOI: 10.1016/j.carbpol.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.
Collapse
Affiliation(s)
- Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jae Hee Seo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Ji Seong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jin Hwan Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Koo Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
2
|
Zhao B, Cai J, Zhang X, Li J, Bao Z, Chen Y, Wu X. Single nucleotide polymorphisms in the KRT82 promoter region modulate irregular thickening and patchiness in the dorsal skin of New Zealand rabbits. BMC Genomics 2024; 25:458. [PMID: 38730432 PMCID: PMC11088042 DOI: 10.1186/s12864-024-10370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND While rabbits are used as models in skin irritation tests, the presence of irregular patches and thickening on the dorsal skin can affect precise evaluation. In this study, genes associated with patchiness or non-patchiness on the dorsal skin of New Zealand rabbits were investigated to identify potential regulators of the patchiness phenotype. RESULTS The results showed that parameters associated with hair follicles (HFs), such as HF density, skin thickness, and HF depth, were augmented in rabbits with the patchiness phenotype relative to the non-patchiness phenotype. A total of 592 differentially expressed genes (DEGs) were identified between the two groups using RNA-sequencing. These included KRT72, KRT82, KRT85, FUT8, SOX9, and WNT5B. The functions of the DEGs were investigated by GO and KEGG enrichment analyses. A candidate gene, KRT82, was selected for further molecular function verification. There was a significant positive correlation between KRT82 expression and HF-related parameters, and KRT82 overexpression and knockdown experiments with rabbit dermal papilla cells (DPCs) showed that it regulated genes related to skin and HF growth and development. Investigation of single nucleotide polymorphisms (SNPs) in the exons and promoter region of KRT82 identified four SNPs in the promoter region but none in the exons. The G.-631G > T, T.-696T > C, G.-770G > T and A.-873 A > C alleles conformed to the Hardy - Weinberg equilibrium, and three identified haplotypes showed linkage disequilibrium. Luciferase reporter assays showed that the core promoter region of KRT82 was located in the - 600 to - 1200 segment, in which the four SNPs were located. CONCLUSIONS The morphological characteristics of the patchiness phenotype were analyzed in New Zealand rabbits and DEGs associated with this phenotype were identified by RNA-sequencing. The biological functions of the gene KRT82 associated with this phenotype were analyzed, and four SNPs were identified in the promoter region of the gene. These findings suggest that KRT82 may be a potential biomarker for the breeding of experimental New Zealand rabbits.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Dorożyńska K, Maj D. Rabbits - their domestication and molecular genetics of hair coat development and quality. Anim Genet 2020; 52:10-20. [PMID: 33216407 DOI: 10.1111/age.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is the only representative of its genus living in present-day Europe and North Africa, and all domestic rabbits are descendants of this one species, which is native to the Iberian Peninsula. There are over 300 breeds of rabbits that differ in size, coat color, length of ears and type of fur. Rabbits are bred for various reasons, such as for laboratory animals and a source of meat, wool and fur, as well as for pets and exhibition animals. The hair coat is a important economic trait of rabbits. Its development and quality are influenced by various factors, both environmental and genetic. The genetic mechanisms underlying its development have not been thoroughly researched. The aim of this review is to discuss the domestication of rabbits and the different aspects of rabbit genetics. A brief review of the properties of rabbit hair coat, hair coat development and hair cycle will be provided, followed by discussion of the factors regulating hair coat development, molecular control of hair coat development and the role of non-coding RNAs in the regulation of gene expression in the hair follicles of rabbits. Information about genetic regulation of pathways could provide useful tools for improving hair coat quality and be of practical use in rabbit breeding.
Collapse
Affiliation(s)
- K Dorożyńska
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - D Maj
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| |
Collapse
|
4
|
Revitalizing the local anesthetic effect of Mebeverine hydrochloride via encapsulation within ethosomal vesicular system. Colloids Surf B Biointerfaces 2020; 194:111208. [DOI: 10.1016/j.colsurfb.2020.111208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
|
5
|
Fu X, Shi Y, Wang H, Zhao X, Sun Q, Huang Y, Qi T, Lin G. Ethosomal Gel for Improving Transdermal Delivery of Thymosin β-4. Int J Nanomedicine 2019; 14:9275-9284. [PMID: 31819429 PMCID: PMC6885565 DOI: 10.2147/ijn.s228863] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Thymosin β-4(Tβ-4) is a macromolecular protein drug with potential for drug development in wound repair but is limited by the shortcomings of macromolecular protein, such as large volumes, poor membrane permeability, and unstable physicochemical characteristics. Ethosomes could enhance cell membrane fluidity and reduce epidermal membrane density to make macromolecular drugs through the stratum corneum into the deeper layers of the skin easily. Herein, we developed and characterized a novel transdermal delivery vehicle to load macromolecular protein peptides and use Tβ-4 as a model drug wrapped into ethosomes. Methods We used the orthogonal method to optimize the formulation of the ethosome preparation prepared by the ethonal infusion method. Ethosomal gels were characterized by using different analytical methods. Transdermal release rate in vitro have been demonstrated in Franz diffusion cells and the efficacy of drug-loaded nanocarriers in vivo was investigated in a mouse model. Results Optimized Tβ-4 ethosomal gels have good physicochemical properties. The drug amounts of the cumulative release in the ethosomal gel within 5 hours were 1.67 times that of the T-β4 gel in vitro release study, and the wound healing time of ethosomal gel group was only half of the T-β4 gel group in vivo pharmacokinetic study. Compared with the free drug group, the ethosome preparation not only promotes the percutaneous absorption process of the macromolecular protein drugs but also shortened wound recovery time. Conclusion Hence, we provide a possible good design for ethosomal gel system that can load macromolecular protein peptide drugs to achieve transdermal drug administration, promoting the percutaneous absorption of the drug and improving the effect.
Collapse
Affiliation(s)
- Xianglei Fu
- School of Pharmaceutical Science, Shandong University, Jinan 250012,People's Republic of China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hui Wang
- School of Pharmaceutical Science, Shandong University, Jinan 250012,People's Republic of China
| | - Xiaogang Zhao
- The Second Hospital of Shandong University, Jinan 250033, People's Republic of China
| | - Qifeng Sun
- The Second Hospital of Shandong University, Jinan 250033, People's Republic of China
| | - Yi Huang
- School of Pharmaceutical Science, Shandong University, Jinan 250012,People's Republic of China
| | - Tongtong Qi
- School of Pharmaceutical Science, Shandong University, Jinan 250012,People's Republic of China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012,People's Republic of China
| |
Collapse
|
6
|
Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC Genomics 2019; 20:140. [PMID: 30770723 PMCID: PMC6377753 DOI: 10.1186/s12864-019-5503-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hair fibre length is an important economic trait of rabbits in fur production. However, molecular mechanisms regulating rabbit hair growth have remained elusive. RESULTS Here we aimed to characterise the skin traits and gene expression profiles of short-hair and long-hair rabbits by histological and transcriptome analyses. Haematoxylin-eosin staining was performed to observe the histological structure of the skin of short-hair and long-hair rabbits. Compared to that in short-hair rabbits, a significantly longer anagen phase was observed in long-hair rabbits. In addition, by RNA sequencing, we identified 951 genes that were expressed at significantly different levels in the skin of short-hair and long-hair rabbits. Nine significantly differentially expressed genes were validated by quantitative real-time polymerase chain reaction. A gene ontology analysis revealed that epidermis development, hair follicle development, and lipid metabolic process were significantly enriched. Further, we identified potential functional genes regulating follicle development, lipid metabolic, and apoptosis as well as important pathways including extracellular matrix-receptor interaction and basal cell carcinoma pathway. CONCLUSIONS The present study provides transcriptome evidence for the differences in hair growth between short-hair and long-hair rabbits and reveals that lipid metabolism and apoptosis might constitute major factors contributing to hair length.
Collapse
|