1
|
Dias TG, Rodrigues LDS, Farias JR, Pereira ALF, Ferreira AGN, Neto MS, Dutra RP, Reis AS, Guerra RNM, Monteiro-Neto V, Maciel MCG. Immunomodulatory Activity of Probiotics in Models of Bacterial Infections. Probiotics Antimicrob Proteins 2024; 16:862-874. [PMID: 37191780 DOI: 10.1007/s12602-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
As resistance to conventional antibiotics among bacteria continues to increase, researchers are increasingly focusing on alternative strategies for preventing and treating bacterial infections, one of which is microbiota modulation. The objective of this review is to analyze the scientific literature on the immunomodulatory effects of probiotics in bacterial infections. This is an integrative review of the literature based on systematic steps, with searches performed in the databases Medline, PubMed, Scopus, Embase, and ScienceDirect. The most prevalent bacterial genera used to evaluate infectious processes were Salmonella, Escherichia, Klebsiella, and Streptococcus. Lactobacillus was the most commonly used probiotic genus, with Lactobacillus delbrueckii subsp. bulgaricus is the most frequently used species. In most studies, prophylactic treatment with concentrations of probiotics equal to or greater than 8 log CFU/mL was chosen. However, there was considerable heterogeneity in terms of effective treatment duration, indicating that the results cannot be generalized across all studies. This review found that probiotics interact with the immune system through different mechanisms and have a positive effect on preventing different types of bacterial infections.
Collapse
Affiliation(s)
- Tatielle Gomes Dias
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | | | - Josivan Regis Farias
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Ana Lúcia Fernandes Pereira
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Adriana Gomes Nogueira Ferreira
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Marcelino Santos Neto
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Richard Pereira Dutra
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Aramys Silva Reis
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Márcia Cristina Gonçalves Maciel
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil.
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
2
|
Yasuda S, Horinaka M, Sakai T. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells. Oncol Lett 2019; 18:4253-4261. [PMID: 31579089 DOI: 10.3892/ol.2019.10739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sulforaphane and Lactobacilli induce apoptosis in several cancer cells. Sulforaphane, a dietary isothiocyanate, is an attractive agent due to its potent anticancer effects. Sulforaphane suppresses the proliferation of various cancer cells in vitro and in vivo. The present study investigated the effect of sulforaphane and a co-culture with Lactobacillus-treated peripheral blood mononuclear cells (PBMCs) in human colon cancer cells. The combination markedly induced apoptosis in human colon cancer HCT116 and SW480 cells. A pan-caspase inhibitor markedly inhibited apoptosis, and a tumor necrosis factor (TNF) receptor/Fc chimera partially inhibited apoptosis in both cells. The amount of TNFα secretion in the culture supernatant was significantly increased by co-culture with Lactobacillus-treated normal human PBMCs. On the other hand, the expression of cellular inhibitor of apoptosis-2 (cIAP-2), an anti-apoptotic protein, was increased by co-culture with Lactobacillus-treated PBMCs in colon cancer cells, but sulforaphane treatment significantly suppressed the induction of cIAP-2. The present results revealed that sulforaphane enhances apoptosis in human colon cancer cells under co-culture with Lactobacillus-treated PBMCs via the TNFα signaling pathway.
Collapse
Affiliation(s)
- Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Arai S, Iwabuchi N, Takahashi S, Xiao JZ, Abe F, Hachimura S. Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One 2018; 13:e0199018. [PMID: 29897995 PMCID: PMC5999281 DOI: 10.1371/journal.pone.0199018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Antigen-specific immunoglobulin (Ig) A plays a major role in host defense against infections in gut mucosal tissue. Follicular helper T (Tfh) cells are located in germinal centers and promote IgA production via interactions with germinal center B cells. Several studies have demonstrated that some lactic acid bacteria (LAB) strains activate the host’s acquired immune system, inducing IgA secretion in the intestine. However, the precise molecular mechanisms underlying the effects of LAB on IgA production and Tfh cells are not fully resolved. Lactobacillus paracasei MCC1849 is a probiotic strain isolated from the intestine of a healthy adult. In this study, we investigated the effects of orally administered heat-killed MCC1849 on IgA production in the intestine and on Tfh cell induction in vivo. We found that orally administered MCC1849 induced antigen-specific IgA production in the small intestine, serum and lungs. We also observed that MCC1849 increased the proportion of IgA+ B cells and Tfh cells in Peyer’s patches (PPs). In addition, MCC1849 increased the gene expression of IL-12p40, IL-10, IL-21, STAT4 and Bcl-6 associated with Tfh cell differentiation. These results suggest that orally administered MCC1849 enhances antigen-specific IgA production and likely affects Tfh cell differentiation in PPs.
Collapse
Affiliation(s)
- Satoshi Arai
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
- * E-mail:
| | - Noriyuki Iwabuchi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Sachiko Takahashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Pérez Montoro B, Benomar N, Caballero Gómez N, Ennahar S, Horvatovich P, Knapp CW, Gálvez A, Abriouel H. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiol 2018; 72:31-38. [DOI: 10.1016/j.fm.2017.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
|
5
|
Maekawa T, Ishijima AS, Ida M, Izumo T, Ono Y, Shibata H, Abe S. Prophylactic Effect of Lactobacillus pentosus strain S-PT84 on Candida Infection and Gastric Inflammation in a Murine Gastrointestinal Candidiasis Model [Errata]. Med Mycol J 2017; 57:E81-E92. [PMID: 27904074 DOI: 10.3314/mmj.16-00012e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously showed a prophylactic effect of Lactobacillus pentosus strain S-PT84 against oral candidiasis in mice. In the present study, we evaluated the protective effect of S-PT84 against Candida infection of the gastrointestinal tract. As the first step, we used an in vitro assay to compare the inhibitory effects of several lactobacilli (S-PT84 and Lactobacillus pentosus type strain JCM1558T, Lactobacillus gasseri type strain JCM1131T and Lactobacillus casei type strain JCM1134T) on mycelial growth of Candida albicans. S-PT84 directly adhered to Candida cells and showed the strongest growth-inhibitory activity among the tested Lactobacillus strains. In the second experiment, we used an in vivo assay to evaluate the effect of S-PT84 ingestion on severity score of stomach lesion and gastric inflammation in a mouse model of gastrointestinal candidiasis. The severity scores were significantly improved by oral administration of S-PT84 (6 mg/ 200 μL), consistent with decreased coverage of stomach lesions by patchy whitish plaques. The attenuation of stomach lesion severity by S-PT84 was more pronounced than that obtained with L. gasseri type strain JCM1131T, consistent with the results of the above in vitro study. Histological analysis also indicated that S-PT84 prevented the adhesion of C. albicans to the stomach surface and suppressed stomach inflammation caused by neutrophil infiltration. Furthermore, S-PT84 also suppressed the vascular permeability observed in Candida-infected stomach. These results suggest that oral administration of S-PT84 might be effective not only in inhibiting Candida infection but also in preventing gastric inflammation induced by Candida infection.
Collapse
|
6
|
Abriouel H, Pérez Montoro B, Casimiro-Soriguer CS, Pérez Pulido AJ, Knapp CW, Caballero Gómez N, Castillo-Gutiérrez S, Estudillo-Martínez MD, Gálvez A, Benomar N. Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front Microbiol 2017; 8:891. [PMID: 28588563 PMCID: PMC5439011 DOI: 10.3389/fmicb.2017.00891] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria-host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria's adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - Carlos S Casimiro-Soriguer
- Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Cientificas, Universidad Pablo de OlavideSevilla, Spain
| | - Antonio J Pérez Pulido
- Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Cientificas, Universidad Pablo de OlavideSevilla, Spain
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, University of StrathclydeGlasgow, United Kingdom
| | - Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - Sonia Castillo-Gutiérrez
- Área de Estadística e Investigación Operativa, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - María D Estudillo-Martínez
- Área de Estadística e Investigación Operativa, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| |
Collapse
|
7
|
Maekawa T, Ishijima AS, Ida M, Izumo T, Ono Y, Shibata H, Abe S. Prophylactic Effect of Lactobacillus pentosus strain S-PT84 on Candida Infection and Gastric Inflammation in a Murine Gastrointestinal Candidiasis Model. Med Mycol J 2016; 57:E81-E92. [PMID: 27904056 DOI: 10.3314/mmj.16-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously showed a prophylactic effect of Lactobacillus pentosus strain S-PT84 against oral candidiasis in mice. In the present study, we evaluated the protective effect of S-PT84 against Candida infection of the gastrointestinal tract. As the first step, we used an in vitro assay to compare the inhibitory effects of several lactobacilli (S-PT84 and Lactobacillus pentosus type strain JCM1558T, Lactobacillus gasseri type strain JCM1131T and Lactobacillus casei type strain JCM1134T) on mycelial growth of Candida albicans. S-PT84 directly adhered to Candida cells and showed the strongest growth-inhibitory activity among the tested Lactobacillus strains. In the second experiment, we used an in vivo assay to evaluate the effect of S-PT84 ingestion on severity score of stomach lesion and gastric inflammation in a mouse model of gastrointestinal candidiasis. The severity scores were significantly improved by oral administration of S-PT84 (6 mg/ 200 μL), consistent with decreased coverage of stomach lesions by patchy whitish plaques. The attenuation of stomach lesion severity by S-PT84 was more pronounced than that obtained with L. gasseri type strain JCM1131T, consistent with the results of the above in vitro study. Histological analysis also indicated that S-PT84 prevented the adhesion of C. albicans to the stomach surface and suppressed stomach inflammation caused by neutrophil infiltration. Furthermore, S-PT84 also suppressed the vascular permeability observed in Candida-infected stomach. These results suggest that oral administration of S-PT84 might be effective not only in inhibiting Candida infection but also in preventing gastric inflammation induced by Candida infection.
Collapse
|
8
|
Aarti C, Khusro A, Arasu MV, Agastian P, Al-Dhabi NA. Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SPRINGERPLUS 2016; 5:1743. [PMID: 27795886 PMCID: PMC5055530 DOI: 10.1186/s40064-016-3452-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022]
Abstract
Lactic acid bacteria (LAB) isolated from various foods are important due to their potential to inhibit microorganisms, including drug-resistant bacteria. The objectives of this investigation were to isolate and identify antibacterial substances producing LAB from Hentak, a traditional fermented fish product of Manipur (North-East India), and to optimize the production of antagonistic substances present in cell free neutralized supernatant (CFNS) against enteric bacterial pathogens using the ‘one factor at a time’ (OFAT) method. Out of 10 LAB, the most potent bacterium producing antibacterial substances was isolated and identified as Lactobacillus pentosus strain LAP1 based upon morphological, biochemical and molecular characterization. MRS (de Man, Ragosa and Sharpe) medium was determined to provide better bactericidal activity (AU/ml) than other tested media against the indicator enteric bacteria, including Staphylococcus epidermidis MTTC 3615, Micrococcus luteus MTCC 106, Shigella flexneri MTCC 1457, Yersinia enterocolitica MTCC 840 and Proteus vulgaris MTCC 1771. The culture conditions (pH: 5, temperature: 30 °C and inoculum volume: 1 %) and medium components (carbon source: lactose and nitrogen source: ammonium chloride) were observed to be the most influential parameters of significant antagonistic activity of CFNS against the enteric pathogens. MRS medium supplemented with Tween20 effectively stimulated the yield of antibacterial substances. The CFNS of strain LAP1 exhibited sensitivity to proteolytic enzyme (pepsin) treatment and heat treatment (60 °C for 60 min, 100 °C for 30 min and 121 °C for 15 min) and lost its inhibitory properties. The CFNS was active at an acidic (pH 3.0) to neutral pH (pH 7.0) but lost its antagonistic properties at an alkaline pH. The CFNS obtained from strain LAP1 scavenges the DPPH (1,1-diphenyl-2 picrylhydrazyl) significantly in a concentration-dependent manner within the range of 8.8 ± 0.12–57.35 ± 0.1 %. The OFAT-based approach revealed the baseline for statistical optimization, the scale-up process and efficient production of CFNS by L. pentosus strain LAP1, which could be used as a potential antibacterial and free radical scavenging agent.
Collapse
Affiliation(s)
- Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Naïf Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
9
|
Sequence analysis of five endogenous plasmids isolated from Lactobacillus pentosus F03. Plasmid 2016; 84-85:1-10. [PMID: 26854068 DOI: 10.1016/j.plasmid.2016.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/23/2022]
Abstract
Lactobacillus pentosus F03, a strain isolated from pig intestines in Taiwan, contains multiple endogenous plasmids. We isolated, completely sequenced, and characterized five of the plasmids present in L. pentosus F03 designated as pF03-1 (3282bp), pF03-2 (3293bp), pF03-3 (1787bp), pF03-4 (2138bp), and pF03-5 (1949bp). The replication types of these plasmids were predicted by comparing the features of the replicon nucleotides and the similarity of replication proteins with those of the plasmids of known replication types. The results of basic local alignment search tool analyses indicate that these plasmids, except for pF03-4, belong to different replicating plasmid families. According to replicon and initiator protein analyses, pF03-1, pF03-2, and pF03-3, were determined to belong respectively to the pMV158, pC194/pUB110, and pT181 families of rolling-circle replication plasmids. However, pF03-5 contains the typical features observed in the family of theta-replicating plasmids and belongs to the pUCL287 family of theta-replicating plasmids.
Collapse
|
10
|
Genome sequence of Lactobacillus pentosus IG1, a strain isolated from Spanish-style green olive fermentations. J Bacteriol 2011; 193:5605. [PMID: 21914902 DOI: 10.1128/jb.05736-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lactobacillus pentosus is the most prevalent lactic acid bacterium in Spanish-style green olive fermentations. Here we present the draft genome sequence of L. pentosus IG1, a bacteriocin-producing strain with biotechnological and probiotic properties isolated from this food fermentations.
Collapse
|
11
|
Izumo T, Ida M, Maekawa T, Furukawa Y, Kitagawa Y, Kiso Y. Comparison of the Immunomodulatory Effects of Live and Heat-killed Lactobacillus pentosus S-PT84. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited
| | - Masayuki Ida
- Institute for Health Care Science, Suntory Wellness Limited
| | | | | | | | - Yoshinobu Kiso
- Institute for Health Care Science, Suntory Wellness Limited
| |
Collapse
|