1
|
Šimon M, Kaić A, Potočnik K. Unveiling Genetic Potential for Equine Meat Production: A Bioinformatics Approach. Animals (Basel) 2024; 14:2441. [PMID: 39199974 PMCID: PMC11350750 DOI: 10.3390/ani14162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In view of the predicted significant increase in global meat production, alternative sources such as horsemeat are becoming increasingly important due to their lower environmental impact and high nutritional value. This study aimed to identify SNP markers on the GeneSeek® Genomic Profiler™ Equine (Neogen, Lansing, MI, USA) that are important for horsemeat production traits. First, orthologous genes related to meat yield in cattle and common genes between horses and cattle within QTLs for body size and weight were identified. Markers for these genes were then evaluated based on predicted variant consequences, GERP scores, and positions within constrained elements and orthologous regulatory regions in pigs. A total of 268 markers in 57 genes related to meat production were analyzed. This resulted in 27 prioritized SNP markers in 22 genes, including notable markers in LCORL, LASP1, IGF1R, and MSTN. These results will benefit smallholder farmers by providing genetic insights for selective breeding that could improve meat yield. This study also supports future large-scale genetic analyses such as GWAS and Genomic Best Linear Unbiased Prediction (GBLUP). The results of this study may be helpful in improving the accuracy of genomic breeding values. However, limitations include reliance on bioinformatics without experimental validation. Future research can validate these markers and consider a wider range of traits to ensure accuracy in equine breeding.
Collapse
Affiliation(s)
- Martin Šimon
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| | - Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| |
Collapse
|
2
|
Jung JH, Lee SM, Oh SH. A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods. Anim Biosci 2024; 37:807-816. [PMID: 38637973 PMCID: PMC11065719 DOI: 10.5713/ab.23.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. METHODS A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. RESULTS A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. CONCLUSION The identified SNPs within these regions hold potential value for future markerassisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.
Collapse
Affiliation(s)
| | - Sang Min Lee
- National Institute of Animal Science, RDA, Cheonan, 31000,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| |
Collapse
|
3
|
SAITO I, NAKAMURA K, TOZAKI T, HANO K, TAKASU M. Genetic characterization of Japanese native horse breeds by genotyping variants that are associated with phenotypic traits. J Equine Sci 2023; 34:115-120. [PMID: 38274555 PMCID: PMC10806362 DOI: 10.1294/jes.34.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 01/27/2024] Open
Abstract
Concerns have been raised about the loss of genetic diversity in Japanese native horses because of their declining populations. In this study, we investigated the genetic variation of four genes, myostatin (MSTN), ligand-dependent nuclear receptor corepressor like (LCORL), doublesex and mab-3 related transcription factor 3 (DMRT3), and 5-hydroxytryptamine receptor 1A (HTR1A), which are associated with horse phenotypic traits, in six Japanese horse breeds (Hokkaido, Kiso, Noma, Misaki, Tokara, and Yonaguni). MSTN, LCORL, DMRT3, and HTR1A showed polymorphisms in the Kiso; Hokkaido and Noma; Hokkaido; and Kiso, Tokara, and Yonaguni breeds, respectively. The Misaki did not show polymorphisms in any of the genes. This study may serve as a basis for developing future breeding strategies focusing on traits in Japanese native horses.
Collapse
Affiliation(s)
- Ibuki SAITO
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kotono NAKAMURA
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teruaki TOZAKI
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Kazuki HANO
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
| | - Masaki TAKASU
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
- Center for One Medicine Innovative Translational
Research (COMIT), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Pozharskiy A, Abdrakhmanova A, Beishova I, Shamshidin A, Nametov A, Ulyanova T, Bekova G, Kikebayev N, Kovalchuk A, Ulyanov V, Turabayev A, Khusnitdinova M, Zhambakin K, Sapakhova Z, Shamekova M, Gritsenko D. Genetic structure and genome-wide association study of the traditional Kazakh horses. Animal 2023; 17:100926. [PMID: 37611435 DOI: 10.1016/j.animal.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Horses are traditionally used in Kazakhstan as a source of food and as working and saddle animals as well. Here, for the first time, microarray-based medium-density single nucleotide polymorphism (SNP) genotyping of six traditionally defined types and breeds of indigenous Kazakh horses was conducted to reveal their genetic structure and find markers associated with animal size and weight. The results showed that the predefined separation between breeds and sampled populations was not supported by the molecular data. The lack of genetic variation between breeds and populations was revealed by the principal component analysis, ADMIXTURE, and distance-based analyses, as well as the general population parameters expected and observed heterozygosity (He and Ho) and between-group fixation index (Fst). The analysis revealed that the studied types and breeds should be considered as a single breed, namely the 'Kazakh horse'. The comparison with previously published data on global horse breed diversity revealed the relatively high level of individual diversity of Kazakh horses in comparison with the well-known foreign breeds. The Mongolian and Tuva breeds were identified as the closest horse landraces, demonstrating similar patterns of internal variability. The genome-wide association analysis was performed for animal size and weight as the traits directly related with the meat productivity of horses. The analysis identified a set of 60 SNPs linked with horse genes involved in the regulation of processes of development of connective tissues and the bone system, neural system, immune system regulation, and other processes. The present study is novel and introduces Kazakh horses as a promising genetic source for horse breeding and selection both on the domestic and international levels.
Collapse
Affiliation(s)
- Alexandr Pozharskiy
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
| | - Aisha Abdrakhmanova
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| | - Indira Beishova
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan.
| | - Alzhan Shamshidin
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Askar Nametov
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Tatyana Ulyanova
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Gulmira Bekova
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Nabidulla Kikebayev
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Alexandr Kovalchuk
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Vadim Ulyanov
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Amangeldy Turabayev
- Zhengir Khan West-Kazakhstan Agrarian Technical University, Zhengir Khan Str. 51, 090009 Oral, Kazakhstan
| | - Marina Khusnitdinova
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| | - Kabyl Zhambakin
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| | - Zagipa Sapakhova
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| | - Malika Shamekova
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| | - Dilyara Gritsenko
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040 Almaty, Kazakhstan
| |
Collapse
|
5
|
Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol 2022; 5:1320. [PMID: 36513809 PMCID: PMC9748125 DOI: 10.1038/s42003-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
Collapse
Affiliation(s)
- Haige Han
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Beatrice A. McGivney
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Lucy Allen
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Dongyi Bai
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Leanne R. Corduff
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Gantulga Davaakhuu
- grid.425564.40000 0004 0587 3863Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 54B, Ulaanbaatar, 13330 Mongolia
| | - Jargalsaikhan Davaasambuu
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Dulguun Dorjgotov
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Thomas J. Hall
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Andrew J. Hemmings
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Amy R. Holtby
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Tuyatsetseg Jambal
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Badarch Jargalsaikhan
- grid.444534.60000 0000 8485 883XDepartment of Obstetrics and Gynecology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Uyasakh Jargalsaikhan
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Naveen K. Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - David E. MacHugh
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland ,grid.7886.10000 0001 0768 2743UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Carol Readhead
- grid.20861.3d0000000107068890Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - David Warburton
- grid.42505.360000 0001 2156 6853The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Manglai Dugarjaviin
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Emmeline W. Hill
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland ,grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| |
Collapse
|
6
|
Salek Ardestani S, Zandi MB, Vahedi SM, Janssens S. Population structure and genomic footprints of selection in five major Iranian horse breeds. Anim Genet 2022; 53:627-639. [PMID: 35919961 DOI: 10.1111/age.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The genetic structure and characteristics of Iranian native breeds are yet to be comprehensibly investigated and studied. Therefore, we employed genomic information of 364 Iranian native horses representing the Asil (n = 109), Caspian (n = 40), Dareshuri (n = 44), Kurdish (n = 95), and Turkoman (n = 76) breeds to reveal the genetic structure and characteristics. For these and 19 other horse breeds, principal component analysis, Bayesian model-based, Neighbor-Net, and bootstrap-based TreeMix approaches were applied to investigate and compare their genetic structure. Additionally, three haplotype-based methods including haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length were applied to trace genomic footprints of selection of Asil, Caspian, Dareshuri, Kurdish, and Turkoman groups. Then, the Mahalanobis distance based on the negative-log10 rank-based P-values was estimated based on the haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length values. Asil, Caspian, Dareshuri, Kurdish, and Turkoman can be categorized into five different genetic clusters. Based on the top 1% of Mahalanobis distance based on the negative-log10 rank-based P-values of SNPs, we identified 24 SNPs formerly reported to be associated with different traits and >100 genes undergoing selection pressures in Asil, Caspian, Dareshuri, Kurdish, and Turkoman. The detected QTL undergoing selection pressures were associated with withers height, equine metabolic syndrome, overall body size, insect bite hypersensitivity, guttural pouch tympany, white markings, Rhodococcus equi infection, jumping test score, alternate gaits, and body weight traits. Our findings will aid to have a better perspective of the genetic characteristics and population structure of Asil, Caspian, Dareshuri, Kurdish, and Turkoman horses as Iranian native horse breeds.
Collapse
Affiliation(s)
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Steven Janssens
- Department Biosystems, Center Animal Breeding and Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Finno CJ. Science-in-brief: Genomic and transcriptomic approaches to the investigation of equine diseases. Equine Vet J 2022; 54:444-448. [PMID: 35133024 PMCID: PMC9095347 DOI: 10.1111/evj.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
8
|
Rare and common variant discovery by whole-genome sequencing of 101 Thoroughbred racehorses. Sci Rep 2021; 11:16057. [PMID: 34362995 PMCID: PMC8346562 DOI: 10.1038/s41598-021-95669-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
The Thoroughbred breed was formed by crossing Oriental horse breeds and British native horses and is currently used in horseracing worldwide. In this study, we constructed a single-nucleotide variant (SNV) database using data from 101 Thoroughbred racehorses. Whole genome sequencing (WGS) revealed 11,570,312 and 602,756 SNVs in autosomal (1–31) and X chromosomes, respectively, yielding a total of 12,173,068 SNVs. About 6.9% of identified SNVs were rare variants observed only in one allele in 101 horses. The number of SNVs detected in individual horses ranged from 4.8 to 5.3 million. Individual horses had a maximum of 25,554 rare variants; several of these were functional variants, such as non-synonymous substitutions, start-gained, start-lost, stop-gained, and stop-lost variants. Therefore, these rare variants may affect differences in traits and phenotypes among individuals. When observing the distribution of rare variants among horses, one breeding stallion had a smaller number of rare variants compared to other horses, suggesting that the frequency of rare variants in the Japanese Thoroughbred population increases through breeding. In addition, our variant database may provide useful basic information for industrial applications, such as the detection of genetically modified racehorses in gene-doping control and pedigree-registration of racehorses using SNVs as markers.
Collapse
|
9
|
Nguyen TB, Paul RC, Okuda Y, LE TNA, Pham PTK, Kaissar KJ, Kazhmurat A, Bibigul S, Bakhtin M, Kazymbet P, Maratbek SZ, Meldebekov A, Nishibori M, Ibi T, Tsuji T, Kunieda T. Genetic characterization of Kushum horses in Kazakhstan based on haplotypes of mtDNA and Y chromosome, and genes associated with important traits of the horses. J Equine Sci 2020; 31:35-43. [PMID: 33061782 PMCID: PMC7538259 DOI: 10.1294/jes.31.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
The Kushum is a relatively new breed of horses in Kazakhstan that was established in the
middle of the 20th century through a cross between mares of Kazakhstan local horses and
stallions of Thoroughbred, Trotter, and Russian Don breeds to supply military horses. To
reveal the genetic characteristics of this breed, we investigated haplotypes of
mitochondrial DNA (mtDNA) and single-nucleotide polymorphisms of the Y chromosome, as well
as genotypes of five functional genes associated with coat color, body composition, and
locomotion traits. We detected 10 mtDNA haplotypes that fell into 8 of the 17 major
haplogroups of horse mtDNA, indicating a unique haplotype composition with high genetic
diversity. We also found two Y-chromosomal haplotypes in Kushum horses, which likely
originated from Trotter and/or Don breeds. The findings regarding the mtDNA and
Y-chromosomal haplotypes are concordant with the documented maternal and paternal origins
of the Kushum horses. The allele frequencies of ASIP, MC1R, and MATP associated with coat
color were consistent with the coat color variations of Kushum horses. The allele
frequencies of MSTN associated with endurance performance and those of DMRT3 associated
with gait suggested that the observed allele frequencies of these genes were the result of
selective breeding for these traits. As a result of this study, we were able to obtain
useful information for a better understanding of the origin and breeding history of the
Kushum horse breed using molecular markers.
Collapse
Affiliation(s)
- Trung B Nguyen
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,An Giang University, Vietnam National University, An Giang, Vietnam
| | - Ripon C Paul
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Yu Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Okayama University of Science, Okayama 700-0005, Japan
| | - Thu N A LE
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,University of Agriculture & Forestry, Hue University, Hue, Vietnam
| | - Phuong T K Pham
- An Giang University, Vietnam National University, An Giang, Vietnam
| | - Kushaliye J Kaissar
- Zhangir Khan West Kazakhstan Agrarian-Technical University, Uralsk, Kazakhstan
| | | | | | - Meirat Bakhtin
- Radiobiological Research Institute, JSC Astana Medical University, Astana, Kazakhstan
| | - Polat Kazymbet
- Radiobiological Research Institute, JSC Astana Medical University, Astana, Kazakhstan
| | | | | | - Masahide Nishibori
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takayuki Ibi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takehito Tsuji
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
11
|
Detection of non-targeted transgenes by whole-genome resequencing for gene-doping control. Gene Ther 2020; 28:199-205. [PMID: 32770095 DOI: 10.1038/s41434-020-00185-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Gene doping has raised concerns in human and equestrian sports and the horseracing industry. There are two possible types of gene doping in the sports and racing industry: (1) administration of a gene-doping substance to postnatal animals and (2) generation of genetically engineered animals by modifying eggs. In this study, we aimed to identify genetically engineered animals by whole-genome resequencing (WGR) for gene-doping control. Transgenic cell lines, in which the erythropoietin gene (EPO) cDNA form was inserted into the genome of horse fibroblasts, were constructed as a model of genetically modified horse. Genome-wide screening of non-targeted transgenes was performed to find structural variation using DELLY based on split-read and paired-end algorithms and Control-FREEC based on read-depth algorithm. We detected the EPO transgene as an intron deletion in the WGR data by the split-read algorithm of DELLY. In addition, single-nucleotide polymorphisms and insertions/deletions artificially introduced in the EPO transgene were identified by WGR. Therefore, genome-wide screening using WGR can contribute to gene-doping control even if the targets are unknown. This is the first study to detect transgenes as intron deletions for gene-doping detection.
Collapse
|
12
|
Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes (Basel) 2020; 11:genes11040457. [PMID: 32340130 PMCID: PMC7230449 DOI: 10.3390/genes11040457] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gene doping, an activity which abuses and misuses gene therapy, is a major concern in sports and horseracing industries. Effective methods capable of detecting and monitoring gene doping are urgently needed. Although several PCR-based methods that detect transgenes have been developed, many of them focus only on a single transgene. However, numerous genes associated with athletic ability may be potential gene-doping material. Here, we developed a detection method that targets multiple transgenes. We targeted 12 genes that may be associated with athletic performance and designed two TaqMan probe/primer sets for each one. A panel of 24 assays was prepared and detected via a microfluidic quantitative PCR (MFQPCR) system using integrated fluidic circuits (IFCs). The limit of detection of the panel was 6.25 copy/μL. Amplification-specificity was validated using several concentrations of reference materials and animal genomic DNA, leading to specific detection. In addition, target-specific detection was successfully achieved in a horse administered 20 mg of the EPO transgene via MFQPCR. Therefore, MFQPCR may be considered a suitable method for multiple-target detection in gene-doping control. To our knowledge, this is the first application of microfluidic qPCR (MFQPCR) for gene-doping control in horseracing.
Collapse
|
13
|
Bai H, Lu H, Wang L, Wang S, Zeng W, Zhang T. SNPs analysis of height traits in Ningqiang pony. Anim Biotechnol 2020; 32:566-572. [DOI: 10.1080/10495398.2020.1728288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hao Bai
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Hongzhao Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ling Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Shanshan Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wenxian Zeng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Tao Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
14
|
Tozaki T, Kusano K, Ishikawa Y, Kushiro A, Nomura M, Kikuchi M, Kakoi H, Hirota K, Miyake T, Hill EW, Nagata S. A candidate-SNP retrospective cohort study for fracture risk in Japanese Thoroughbred racehorses. Anim Genet 2019; 51:43-50. [PMID: 31612520 DOI: 10.1111/age.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Fractures are medical conditions that compromise the athletic potential of horses and/or the safety of jockeys. Therefore, the reduction of fracture risk is an important horse and human welfare issue. The present study used molecular genetic approaches to determine the effect of genetic risk for fracture at four candidate SNPs spanning the myostatin (MSTN) gene on horse chromosome 18. Among the 3706 Japanese Thoroughbred racehorses, 1089 (29.4%) had experienced fractures in their athletic life, indicating the common occurrence of this injury in Thoroughbreds. In the case/control association study, fractures of the carpus (carpal bones and distal radius) were statistically associated with g.65809482T/C (P = 1.17 x 10-8 ), g.65868604G/T (P = 2.66 x 10-9 ), and g.66493737C/T (P = 6.41 x 10-8 ). In the retrospective cohort study using 1710 racehorses born in 2000, the relative risk (RR) was highest for male horses at g.65868604G/T, based on the dominant allele risk model (RR = 2.251, 95% confidence interval 1.407-3.604, P = 0.00041), and for female horses at g.65868604G/T, based on the recessive allele risk model (RR = 2.313, 95% confidence interval 1.380-3.877, P = 0.00163). Considering the association of these SNPs with racing performance traits such as speed, these genotypes may affect the occurrence of carpus fractures in Japanese Thoroughbred racehorses as a consequence of the non-genetic influence of the genotype on the distance and/or intensity of racing and training. The genetic information presented here may contribute to the development of strategic training programs and racing plans for racehorses that improve their health and welfare.
Collapse
Affiliation(s)
- T Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - K Kusano
- Equine Department, Japan Racing Association, Minato, Tokyo, 106-8401, Japan
| | - Y Ishikawa
- Racehorse Hospital Ritto Training Center, Japan Racing Association, Ritto, Shiga, 520-3005, Japan
| | - A Kushiro
- Racehorse Hospital Miho Training Center, Japan Racing Association, Miho, Ibaraki, 300-0493, Japan
| | - M Nomura
- Racehorse Hospital Ritto Training Center, Japan Racing Association, Ritto, Shiga, 520-3005, Japan
| | - M Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - H Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - K Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - T Miyake
- Comparative Agricultural Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - E W Hill
- School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland.,Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Pottery Road, Dun Laoghaire, Co Dublin, Ireland
| | - S Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
15
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
16
|
Nakayama K, Inaba Y. Genetic variants influencing obesity-related traits in Japanese population. Ann Hum Biol 2019; 46:298-304. [PMID: 31307227 DOI: 10.1080/03014460.2019.1644373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Adipose tissue is the main organ that stores energy and participates in adaptive thermogenesis of the human body. The adipose tissue content in an individual is determined by a combination of genetic factors and lifestyle related factors. While Japanese people, along with the closely related East Asians, are generally thinner than individuals of European ancestry, they are prone to accumulating visceral adipose tissues. Genome-wide discovery of loci influencing obesity-related traits, and application of the genome sequence data to assess natural selection, provides evidence that the obesity-related traits in East Asians might be shaped by natural selection. Objective: This review aims to summarise health and evolutionary implications of genetic variants influencing obesity-related traits in Japanese. Methods: This study gathered recently published papers of medical, genetic and evolutionary studies regarding obesity-related traits in the Japanese and closely related East Asians. Results and conclusion: A high susceptibility to central obesity of Japanese and closely related East Asians might have been shaped by natural selection favouring thrifty genotypes. Moreover, natural selection favouring higher thermogenic activity of brown adipose tissues would contribute to increased non-thrifty alleles in ancestors of East Asians.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Laboratory of Evolutionary Anthropology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba , Japan
| | - Yuta Inaba
- Laboratory of Evolutionary Anthropology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba , Japan
| |
Collapse
|
17
|
Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS One 2019; 14:e0215913. [PMID: 31022261 PMCID: PMC6483353 DOI: 10.1371/journal.pone.0215913] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/04/2022] Open
Abstract
The study of selection signatures helps to find genomic regions that have been under selective pressure and might host genes or variants that modulate important phenotypes. Such knowledge improves our understanding of how breeding programmes have shaped the genomes of livestock. In this study, 942 stallions were included from four, exemplarily chosen, German warmblood breeds with divergent historical and recent selection focus and different crossbreeding policies: Trakehner (N = 44), Holsteiner (N = 358), Hanoverian (N = 319) and Oldenburger (N = 221). Those breeds are nowadays bred for athletic performance and aptitude for show-jumping, dressage or eventing, with a particular focus of Holsteiner on the first discipline. Blood samples were collected during the health exams of the stallion preselections before licensing and were genotyped with the Illumina EquineSNP50 BeadChip. Autosomal markers were used for a multi-method search for signals of positive selection. Analyses within and across breeds were conducted by using the integrated Haplotype Score (iHS), cross-population Extended Haplotype Homozygosity (xpEHH) and Runs of Homozygosity (ROH). Oldenburger and Hanoverian showed very similar iHS signatures, but breed specificities were detected on multiple chromosomes with the xpEHH. The Trakehner clustered as a distinct group in a principal component analysis and also showed the highest number of ROHs, which reflects their historical bottleneck. Beside breed specific differences, we found shared selection signals in an across breed iHS analysis on chromosomes 1, 4 and 7. After investigation of these iHS signals and shared ROH for potential functional candidate genes and affected pathways including enrichment analyses, we suggest that genes affecting muscle functionality (TPM1, TMOD2-3, MYO5A, MYO5C), energy metabolism and growth (AEBP1, RALGAPA2, IGFBP1, IGFBP3-4), embryonic development (HOXB-complex) and fertility (THEGL, ZPBP1-2, TEX14, ZP1, SUN3 and CFAP61) have been targeted by selection in all breeds. Our findings also indicate selection pressure on KITLG, which is well-documented for influencing pigmentation.
Collapse
|
18
|
Tozaki T, Miyake T, Kikuchi M, Kakoi H, Hirota K, Kusano K, Ishikawa Y, Nomura M, Kushiro A, Nagata S. Heritability estimates of fractures in Japanese Thoroughbred racehorses using a non‐linear model. J Anim Breed Genet 2019; 136:199-204. [DOI: 10.1111/jbg.12387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department Laboratory of Racing Chemistry Utsunomiya Japan
| | - Takeshi Miyake
- Comparative Agricultural Sciences, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Mio Kikuchi
- Genetic Analysis Department Laboratory of Racing Chemistry Utsunomiya Japan
| | - Hironaga Kakoi
- Genetic Analysis Department Laboratory of Racing Chemistry Utsunomiya Japan
| | - Kei‐ichi Hirota
- Genetic Analysis Department Laboratory of Racing Chemistry Utsunomiya Japan
| | | | - Yuhiro Ishikawa
- Racehorse Hospital Ritto Training Center Japan Racing Association Shiga Japan
| | - Motoi Nomura
- Racehorse Hospital Ritto Training Center Japan Racing Association Shiga Japan
| | - Asuka Kushiro
- Racehorse Hospital Miho Training Center Japan Racing Association Ibaraki Japan
| | - Shun‐ichi Nagata
- Genetic Analysis Department Laboratory of Racing Chemistry Utsunomiya Japan
| |
Collapse
|
19
|
Brooks SA, Stick J, Braman A, Palermo K, Robinson NE, Ainsworth DM. Identification of loci affecting sexually dimorphic patterns for height and recurrent laryngeal neuropathy risk in American Belgian Draft Horses. Physiol Genomics 2018; 50:1051-1058. [DOI: 10.1152/physiolgenomics.00068.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Equine recurrent laryngeal neuropathy (RLN) is a bilateral mononeuropathy with an unknown etiology. In Thoroughbreds (TB), we previously demonstrated that the haplotype association for height (LCORL/NCAPG locus on ECA3, which affects body size) and RLN was coincident. In the present study, we performed a genome-wide association scan (GWAS) for RLN in 458 American Belgian Draft Horses, a breed fixed for the LCORL/NCAPG risk alelle. In this breed, RLN risk is associated with sexually dimorphic differences in height, and we identified a novel locus contributing to height in a sex-specific manner: MYPN (ECA1). Yet this specific locus contributes little to RLN risk, suggesting that other growth traits correlated to height may underlie the correlation to this disease. Controlling for height, we identified a locus on ECA15 contributing to RLN risk specifically in males. These results suggest that loci with sex-specific gene expression play an important role in altering growth traits impacting RLN etiology, but not necessarily adult height. These newly identified genes are promising targets for novel preventative and treatment strategies.
Collapse
Affiliation(s)
- Samantha A. Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, Florida
| | - John Stick
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Ashley Braman
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Katelyn Palermo
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, Florida
| | - N. Edward Robinson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
20
|
Tozaki T, Gamo S, Takasu M, Kikuchi M, Kakoi H, Hirota KI, Kusano K, Nagata SI. Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection. BMC Res Notes 2018; 11:708. [PMID: 30309394 PMCID: PMC6180624 DOI: 10.1186/s13104-018-3815-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Doping control is an important and indispensable aspect of fair horse racing; genetic doping has been recently included to this. In this study, we aimed to develop a detection method of gene doping. A plasmid cloned with human erythropoietin gene (p.hEPO, 250 μg/head) was intramuscularly injected into a microminipig. Subsequently, p.hEPO was extracted from 1 mL of plasma and detected by droplet digital polymerase chain reaction. Results The results confirmed that the maximum amount of plasmid was detected at 15 min after administration and the majority of the plasmid was degraded in the bloodstream within 1–2 days after administration. In contrast, low amounts of p.hEPO were detected at 2–3 weeks after administration. These results suggest that the proposed method to detect gene doping can help obtain information for experiments using horses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan. .,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan.
| | - Shiori Gamo
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kanichi Kusano
- Racehorse Hospital Ritto Training Center, Japan Racing Association, 1028 Misono, Ritto, Shiga, 520-3085, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|