1
|
Granath C, Freiholtz D, Bredin F, Olsson C, Franco‐Cereceda A, Björck HM. Acetylsalicylic Acid Is Associated With a Lower Prevalence of Ascending Aortic Aneurysm and a Decreased Aortic Expression of Cyclooxygenase 2. J Am Heart Assoc 2022; 11:e024346. [PMID: 35470674 PMCID: PMC9238591 DOI: 10.1161/jaha.121.024346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022]
Abstract
Background Acetylsalicylic acid (ASA) therapy has been associated with a reduced prevalence and growth rate of abdominal as well as intracranial aneurysms, but the relationship between ASA and ascending aortic aneurysm formation remains largely unknown. The aim of the present study was to investigate whether ASA therapy is associated with a lower prevalence of ascending aortic aneurysm in a surgical cohort. Methods and Results One thousand seven hundred patients undergoing open-heart surgery for ascending aortic aneurysm and/or aortic valve disease were studied in this retrospective cross-sectional study. Aortic dilatation was defined as an aortic root or ascending aortic diameter ≥45 mm. Medications were self-reported by the patients in a systematic questionnaire. Cyclooxygenase gene expression was measured in the intima-media portion of the ascending aorta (n=117). In a multivariable analysis, ASA was associated with a reduced prevalence of ascending aortic aneurysm (relative risk, 0.68 [95% CI, 0.48-0.95], P=0.026) in patients with tricuspid aortic valves, but not in patients with bicuspid aortic valves (relative risk, 0.93 [95% CI, 0.64-1.34], P=0.687). Intima-media cyclooxygenase expression was positively correlated with ascending aortic dimensions (P<0.001 for cyclooxygenase-1 and P=0.05 for cyclooxygenase-2). In dilated, but not nondilated tricuspid aortic valve aortic specimens, ASA was associated with significantly lower cyclooxygenase-2 levels (P=0.034). Conclusions Our findings are consistent with the hypothesis that ASA treatment may attenuate ascending aortic aneurysmal growth, possibly via cyclooxygenase-2 inhibition in the ascending aortic wall and subsequent anti-inflammatory actions.
Collapse
Affiliation(s)
- Carl Granath
- Section of Cardiothoracic SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - David Freiholtz
- Section of Cardiothoracic SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Fredrik Bredin
- Section of Cardiothoracic SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Christian Olsson
- Section of Cardiothoracic SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Anders Franco‐Cereceda
- Section of Cardiothoracic SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Hanna M. Björck
- Cardiovascular Medicine UnitCenter for Molecular MedicineDepartment of MedicineKarolinska Institutet, StockholmKarolinska University HospitalSolnaSweden
| |
Collapse
|
2
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
3
|
Malashicheva A, Kostina A, Kostareva A, Irtyuga O, Gordeev M, Uspensky V. Notch signaling in the pathogenesis of thoracic aortic aneurysms: A bridge between embryonic and adult states. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165631. [PMID: 31816439 DOI: 10.1016/j.bbadis.2019.165631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Aneurysms of the thoracic aorta are a "silent killer" with no evident clinical signs until the fatal outcome. Molecular and genetic bases of thoracic aortic aneurysms mainly include transforming growth factor beta signaling, smooth muscle contractile units and metabolism genes, and extracellular matrix genes. In recent studies, a role of Notch signaling, among other pathways, has emerged in disease pathogenesis. Notch is a highly conserved signaling pathway that regulates the development and differentiation of many types of tissues and influences major cellular processes such as cell proliferation, differentiation and apoptosis. Mutations in several Notch signaling components have been associated with a number of heart defects, demonstrating an essential role of Notch signaling both in cardiovascular system development and its maintenance during postnatal life. This review discusses the role of Notch signaling in the pathogenesis of thoracic aortic aneurysms considering development and maintenance of the aortic root and how developmental regulations by Notch signaling may influence thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia; Saint Petersburg State University, Department of Embryology, Universitetskaya nab., 7/9, 199034, Saint Petersburg, Russia.
| | - Aleksandra Kostina
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Olga Irtyuga
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Mikhail Gordeev
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Vladimir Uspensky
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| |
Collapse
|
4
|
Stern C, Scharinger B, Tuerkcan A, Nebert C, Mimler T, Baranyi U, Doppler C, Aschacher T, Andreas M, Stelzmueller ME, Ehrlich M, Graf A, Laufer G, Bernhard D, Messner B. Strong Signs for a Weak Wall in Tricuspid Aortic Valve Associated Aneurysms and a Role for Osteopontin in Bicuspid Aortic Valve Associated Aneurysms. Int J Mol Sci 2019; 20:ijms20194782. [PMID: 31561491 PMCID: PMC6802355 DOI: 10.3390/ijms20194782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Central processes in the pathogenesis of TAV- (tricuspid aortic valve) and BAV- (bicuspid aortic valve) associated ascending thoracic aortic aneurysm (ATAA) development are still unknown. To gain new insights, we have collected aortic tissue and isolated smooth muscle cells of aneurysmal tissue and subjected them to in situ and in vitro analyses. We analyzed aortic tissue from 78 patients (31 controls, 28 TAV-ATAAs, and 19 BAV-ATAAs) and established 30 primary smooth muscle cell cultures. Analyses included histochemistry, immuno-, auto-fluorescence-based image analyses, and cellular analyses including smooth muscle cell contraction studies. With regard to TAV associated aneurysms, we observed a strong impairment of the vascular wall, which appears on different levels—structure and dimension of the layers (reduced media thickness, increased intima thickness, atherosclerotic changes, degeneration of aortic media, decrease of collagen, and increase of elastic fiber free area) as well as on the cellular level (accumulation of fibroblasts/myofibroblasts, and increase in the number of smooth muscle cells with a reduced alpha smooth muscle actin (α-SM actin) content per cell). The pathological changes in the aortic wall of BAV patients were much less pronounced—apart from an increased expression of osteopontin (OPN) in the vascular wall which stem from smooth muscle cells, we observed a trend towards increased calcification of the aortic wall (increase significantly associated with age). These observations provide strong evidence for different pathological processes and different disease mechanisms to occur in BAV- and TAV-associated aneurysms.
Collapse
Affiliation(s)
- Christian Stern
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Julius-Bernstein-Institute for Physiology, Medical Faculty of the Martin-Luther- University, 06112 Halle-Wittenberg, Germany.
| | - Bernhard Scharinger
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Radiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
| | - Adrian Tuerkcan
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Clemens Nebert
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Teresa Mimler
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christian Doppler
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Division for Pathophysiology, Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, 4020 Linz, Austria.
| | - Thomas Aschacher
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Martin Andreas
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | | | - Marek Ehrlich
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Alexandra Graf
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.
| | - Guenther Laufer
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - David Bernhard
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Division for Pathophysiology, Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, 4020 Linz, Austria.
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
6
|
Krizhanovskii C, Ntika S, Olsson C, Eriksson P, Franco-Cereceda A. Elevated circulating fasting glucagon-like peptide-1 in surgical patients with aortic valve disease and diabetes. Diabetol Metab Syndr 2017; 9:79. [PMID: 29046727 PMCID: PMC5635503 DOI: 10.1186/s13098-017-0279-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes is a risk factor for peripheral, coronary, and cerebrovascular disease. In contrast, results also indicate that patients with diabetes have reduced prevalence of aortic aneurysms, although the mechanisms remain largely unknown. We hypothesize that altered endogenous secretion of the intestinal hormone glucagon-like peptide-1 (GLP-1)-previously shown to protect from aneurysm formation, and governing many of the mechanisms thought to be involved in aneurysm formation-may provide insights into the mechanisms underlying the inverse relationship of diabetes and aneurysm. METHODS We undertook a case-control study to characterize circulating plasma GLP-1 levels in diabetic and non-diabetic surgical patients with aortic valve disease, and with or without ascending aortic dilation. The cohort included patients with a bicuspid aortic valve (BAV), a common congenital disorder associated with ascending aortic aneurysm, as well as patients with a tricuspid aortic valve (TAV). RESULTS In our patient group, diabetes was characterized by a significant increase in fasting plasma GLP-1 levels. Further, we show that aortic dilation in these patients was associated with a significant increase in fasting plasma GLP-1, although a significant increase in the intact and bioactive peptide could not be detected in BAV patients with aortic dilation. CONCLUSION A subgroup of diabetic patients with aortic valve pathology have increased fasting plasma GLP-1 levels, which may be of importance for the low prevalence of aortic dilation in this patient group. Further, in TAV patients, GLP-1 secretion and plasma levels of intact GLP-1 are upregulated in association with aortic dilation, possibly indicating a compensatory mechanism.
Collapse
Affiliation(s)
- Camilla Krizhanovskii
- Department of Internal Medicine, Södertälje Hospital, 152 86 Södertälje, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Stelia Ntika
- Department of Internal Medicine, Södertälje Hospital, 152 86 Södertälje, Sweden
| | - Christian Olsson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | | |
Collapse
|