1
|
Bispo DPCF, Lins CCSA, Hawkes KL, Tripp S, Khoo TK. The Positive Effects of Physical Activity on Quality of Life in Parkinson's Disease: A Systematic Review. Geriatrics (Basel) 2024; 9:94. [PMID: 39051258 PMCID: PMC11270410 DOI: 10.3390/geriatrics9040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Physical activity can have positive effects on motor and non-motor symptoms in Parkinson's disease, but its benefits in terms of quality of life and function are uncertain and vary based on the specific forms of activities and interventions. OBJECTIVE We sought to assess the current evidence on the positive effects of physical activity in people with Parkinson's disease and more specifically in relation to its potential benefits for quality of life. METHODS This systematic review was conducted between January and April 2024 via the PubMed, Medline, and Scopus databases. Predetermined search criteria were used that included the following terms: "Parkinson's disease", "quality of life" and "physical activity". RESULTS A total of 1669 articles were identified. After utilizing predetermined criteria, a total of fifteen articles met the selection criteria. Statistically significant improvements in quality of life were found in seven studies. Seven studies demonstrated a significant improvement in non-motor symptoms, while nine studies showed an improvement in motor symptoms. CONCLUSIONS Despite heterogeneity in the study designs, interventions and clinical assessments, the articles identified in this review yielded mostly positive results in relation to physical activities. The findings reflect an improvement in motor and non-motor symptoms may translate to a better quality of life in people with Parkinson's disease.
Collapse
Affiliation(s)
- Dharah P. C. F. Bispo
- School of Medicine & Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
- Neuropsychiatry and Behavioural Sciences Department, Health Sciences Centre, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
- Gerontology Department, Health Sciences Centre, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Carla C. S. A. Lins
- Gerontology Department, Health Sciences Centre, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
- Anatomy Department, Health Sciences Centre, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Kelly L. Hawkes
- Northern New South Wales Local Health District, Ballina, NSW 2478, Australia
| | - Shae Tripp
- Northern New South Wales Local Health District, Ballina, NSW 2478, Australia
| | - Tien K. Khoo
- School of Medicine & Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
- Northern New South Wales Local Health District, Ballina, NSW 2478, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Amini A, Esmaeili F, Golpich M. Possible role of lncRNAs in amelioration of Parkinson's disease symptoms by transplantation of dopaminergic cells. NPJ Parkinsons Dis 2024; 10:56. [PMID: 38472261 PMCID: PMC10933336 DOI: 10.1038/s41531-024-00661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are biomarkers for diagnosis and treatment of Parkinson's disease (PD). Since dopaminergic cell transplantation is a clinical method to treat PD, this study investigated the effects of dopaminergic cell therapy on the expression of some lncRNAs and genes related to PD. In this study, Twenty-eight rats were randomly assigned to four experimental groups. The control group (Sal group) received saline injections. The Par group was a PD rat model with 6-hydroxydopamine (6-OHDA) injection in right striatum (ST). PD animals were transplanted by undifferentiated P19 stem cells (Par-E group), and P19-derived dopaminergic cells (Par-N group). Cell transplant effects were evaluated using behavioral tests (cylinder, open field, and rotarod tests), and histological methods (H&E and Nissl staining, and immunohistochemistry). Moreover, the expression of lncRNAs MALAT1, MEG3, and SNHG1, alongside specific neuronal (synaptophysin) and dopaminergic (tyrosine hydroxylase) markers was evaluated by qRT-PCR. Behavioral and histopathological examinations revealed that cell transplantation partially compensated dopaminergic cell degeneration in ST and substantia nigra (SN) of PD rats. The expression of MALAT1, SNHG1, and MEG3 was decreased in the ST of the Par group, while MEG3 and SNHG1 gene expression was increased in PBMC relative to the Sal group. In PBMC of the Par-N group, all three lncRNAs showed a reduction in their expression. Conversely, MALAT1 and SNHG1 expression was increased in ST tissue, while MEG3 gene expression was decreased compared to the Sal group. In conclusion, dopaminergic cell transplantation could change the lncRNAs expression. Furthermore, it partially improves symptoms in PD rats.
Collapse
Affiliation(s)
- A Amini
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - F Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - M Golpich
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Liu Z, Lemus J, Smirnova IV, Liu W. Rehabilitation for non-motor symptoms for patients with Parkinson's disease from an α-synuclein perspective: a narrative review. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:235-257. [PMID: 37920444 PMCID: PMC10621781 DOI: 10.37349/ent.2023.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting aged population around the world. PD is characterized by neuronal Lewy bodies present in the substantia nigra of the midbrain and the loss of dopaminergic neurons with various motor and non-motor symptoms associated with the disease. The protein α-synuclein has been extensively studied for its contribution to PD pathology, as α-synuclein aggregates form the major component of Lewy bodies, a hallmark of PD. In this narrative review, the authors first focus on a brief explanation of α-synuclein aggregation and circumstances under which aggregation can occur, then present a hypothesis for PD pathogenesis in the peripheral nervous system (PNS) and how PD can spread to the central nervous system from the PNS via the transport of α-synuclein aggregates. This article presents arguments both for and against this hypothesis. It also presents various non-pharmacological rehabilitation approaches and management techniques for both motor and non-motor symptoms of PD and the related pathology. This review seeks to examine a possible hypothesis of PD pathogenesis and points to a new research direction focus on rehabilitation therapy for patients with PD. As various non-motor symptoms of PD appear to occur earlier than motor symptoms, more focus on the treatment of non-motor symptoms as well as a better understanding of the biochemical mechanisms behind those non-motor symptoms may lead to better long-term outcomes for patients with PD.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Lemus
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Irina V. Smirnova
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Marino G, Campanelli F, Natale G, De Carluccio M, Servillo F, Ferrari E, Gardoni F, Caristo ME, Picconi B, Cardinale A, Loffredo V, Crupi F, De Leonibus E, Viscomi MT, Ghiglieri V, Calabresi P. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson's disease restoring striatal synaptic plasticity. SCIENCE ADVANCES 2023; 9:eadh1403. [PMID: 37450585 PMCID: PMC10348672 DOI: 10.1126/sciadv.adh1403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Intensive physical activity improves motor functions in patients with Parkinson's disease (PD) at early stages. However, the mechanisms underlying the beneficial effects of exercise on PD-associated neuronal alterations have not been fully clarified yet. Here, we tested the hypothesis that an intensive treadmill training program rescues alterations in striatal plasticity and early motor and cognitive deficits in rats receiving an intrastriatal injection of alpha-synuclein (α-syn) preformed fibrils. Improved motor control and visuospatial learning in active animals were associated with a recovery of dendritic spine density alterations and a lasting rescue of a physiological corticostriatal long-term potentiation (LTP). Pharmacological analyses of LTP show that modulations of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, the main brain-derived neurotrophic factor receptor, are involved in these beneficial effects. We demonstrate that intensive exercise training has effects on the early plastic alterations induced by α-syn aggregates and reduces the spread of toxic α-syn species to other vulnerable brain areas.
Collapse
Affiliation(s)
- Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria De Carluccio
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation IRCCS S.Raffaele-Roma, Rome, Italy
| | - Federica Servillo
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | | | - Barbara Picconi
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Antonella Cardinale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Vittorio Loffredo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Francesco Crupi
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Veronica Ghiglieri
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Goenawan H, Kiasati S, Sylviana N, Megantara I, Lesmana R. Exercise-Induced Autophagy Ameliorates Motor Symptoms Progressivity in Parkinson's Disease Through Alpha-Synuclein Degradation: A Review. Neuropsychiatr Dis Treat 2023; 19:1253-1262. [PMID: 37255530 PMCID: PMC10226548 DOI: 10.2147/ndt.s401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
This study reviews the molecular mechanism of exercise-induced autophagy/mitophagy and its possible mechanism in delaying motor symptoms progressivity in Parkinson's disease (PD). Relevant articles obtained from PubMed and EBSCOhost were reviewed. After analyzing the articles, it was found that autophagy can be induced by exercise and can possibly be activated through the AMPK-ULK1 pathway. Mitophagy can also be induced by exercise and can possibly be activated through PINK1/Parkin pathway and AMPK-dependent pathway. Moreover, exercise-induced autophagy can decrease the accumulation of toxic α-synuclein aggregates in PD and therefore can delay motor symptoms progressivity.
Collapse
Affiliation(s)
- Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shabrina Kiasati
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Imam Megantara
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
8
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
9
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
10
|
The Anti-Parkinson Potential of Gingko biloba-Supplement Mitigates Cortico-Cerebellar Degeneration and Neuropathobiological Alterations via Inflammatory and Apoptotic Mediators in Mice. Neurochem Res 2022; 47:2211-2229. [DOI: 10.1007/s11064-022-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
11
|
Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration. Brain Sci 2022; 12:brainsci12030345. [PMID: 35326301 PMCID: PMC8946530 DOI: 10.3390/brainsci12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Metals—especially iron, copper and manganese—are important elements of brain functions and development. Metal-dysregulation homeostasis is associated with brain-structure damage to the motor, cognitive and emotional systems, and leads to neurodegenerative processes. There is more and more evidence that specialized cognitive and motor exercises can enhance brain function and attenuate neurodegeneration in mechanisms, such as improving neuroplasticity by altering the synaptic structure and function in many brain regions. Psychological and physical methods of rehabilitation are now becoming increasingly important, as pharmacological treatments for movement, cognitive and emotional symptoms are limited. The present study describes physical and cognitive rehabilitation methods of patients associated with metal-induced neurotoxicity such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and Wilson’s disease. In our review, we describe physical (e.g., virtual-reality environments, robotic-assists training) and psychological (cognitive training, cognitive stimulation, neuropsychological rehabilitation and cognitive-behavioral and mindfulness-based therapies) methods, significantly improving the quality of life and independence of patients associated with storage diseases. Storage diseases are a diverse group of hereditary metabolic defects characterized by the abnormal cumulation of storage material in cells. This topic is being addressed due to the fact that rehabilitation plays a vital role in the treatment of neurodegenerative diseases. Unfortunately so far there are no specific guidelines concerning physiotherapy in neurodegenerative disorders, especially in regards to duration of exercise, type of exercise and intensity, as well as frequency of exercise. This is in part due to the variety of symptoms of these diseases and the various levels of disease progression. This further proves the need for more research to be carried out on the role of exercise in neurodegenerative disorder treatment.
Collapse
|
12
|
Fikry H, Saleh LA, Abdel Gawad S. Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model. CNS Neurosci Ther 2022; 28:732-748. [PMID: 35068069 PMCID: PMC8981438 DOI: 10.1111/cns.13805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Aims Methods Results Conclusion
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology Faculty of Medicine Ain Shams University Cairo Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology Faculty of Medicine Ain Shams University Cairo Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology Faculty of Medicine Ain Shams University Cairo Egypt
| |
Collapse
|
13
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
14
|
Summers RLS, Rafferty MR, Howell MJ, MacKinnon CD. Motor Dysfunction in REM Sleep Behavior Disorder: A Rehabilitation Framework for Prodromal Synucleinopathy. Neurorehabil Neural Repair 2021; 35:611-621. [PMID: 33978530 PMCID: PMC8225559 DOI: 10.1177/15459683211011238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson disease (PD) and other related diseases with α-synuclein pathology are associated with a long prodromal or preclinical stage of disease. Predictive models based on diagnosis of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) make it possible to identify people in the prodromal stage of synucleinopathy who have a high probability of future disease and provide an opportunity to implement neuroprotective therapies. However, rehabilitation providers may be unaware of iRBD and the motor abnormalities that indicate early motor system dysfunction related to α-synuclein pathology. Furthermore, there is no existing rehabilitation framework to guide early interventions for people with iRBD. The purpose of this work is to (1) review extrapyramidal signs of motor system dysfunction in people with iRBD and (2) propose a framework for early protective or preventive therapies in prodromal synucleinopathy using iRBD as a predictive marker. Longitudinal and cross-sectional studies indicate that the earliest emerging motor deficits in iRBD are bradykinesia, deficits performing activities of daily living, and abnormalities in speech, gait, and posture. These deficits may emerge up to 12 years before a diagnosis of synucleinopathy. The proposed rehabilitation framework for iRBD includes early exercise-based interventions of aerobic exercise, progressive resistance training, and multimodal exercise with rehabilitation consultations to address exercise prescription, progression, and monitoring. This rehabilitation framework may be used to implement neuroprotective, multidisciplinary, and proactive clinical care in people with a high likelihood of conversion to PD, dementia with Lewy bodies, or multiple systems atrophy.
Collapse
Affiliation(s)
| | - Miriam R. Rafferty
- Department of Physical Medicine and Rehabilitation and Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Schmidt MY, Chamoli M, Lithgow GJ, Andersen JK. Swimming exercise reduces native ⍺-synuclein protein species in a transgenic C. elegans model of Parkinson's disease. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34222835 PMCID: PMC8243224 DOI: 10.17912/micropub.biology.000413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exercise has been historically recommended to prevent many disease conditions. Intense exercise in particular, has been shown to be beneficial for Parkinson's disease (PD) - stopping and even reversing symptoms in some patients. Recent research in mammalian animal models of Parkinson's have shown that exercise affects ⍺-synuclein aggregate species, considered to be a hallmark of PD. However, the exact changes in native ⍺-synuclein protein species after exercise and the downstream effects of exercise upon the health of the animals remains unclear. Recently, it was shown that swimming constitutes a form of exercise in C. elegans worms that confers a protective effect in several worm models of tau and Huntington protein neurodegeneration. Here we show that a period of swimming exercise (Ex) - 15-20 mins - dramatically reduces several native human ⍺-synuclein protein species in the NL5901 C. elegans worm model of Parkinson's. Exercise on Day 1 of adulthood was found to improve motor function measured by the thrashing rate of worms on Day 2 and Day 4 when compared to both control (untreated) and food restricted (FR) worms. Moreover, exercised worms show smaller ⍺-synuclein::YFP puncta than food restricted worms. Here we show that exercise reduces native human ⍺-synuclein levels independent of food restriction in C. elegans.
Collapse
Affiliation(s)
- Minna Y Schmidt
- The Buck Institute for Research on Aging.,The University of Southern California, Leonard Davis School of Gerontology
| | | | - Gordon J Lithgow
- The Buck Institute for Research on Aging.,The University of Southern California, Leonard Davis School of Gerontology
| | - Julie K Andersen
- The Buck Institute for Research on Aging.,The University of Southern California, Leonard Davis School of Gerontology
| |
Collapse
|
16
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
17
|
Monir DM, Mahmoud ME, Ahmed OG, Rehan IF, Abdelrahman A. Forced exercise activates the NrF2 pathway in the striatum and ameliorates motor and behavioral manifestations of Parkinson's disease in rotenone-treated rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2020; 16:9. [PMID: 33158454 PMCID: PMC7646065 DOI: 10.1186/s12993-020-00171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of nigrostriatal dopaminergic neurons leading to dopamine depletion and problems of movement, emotions, and cognition. While the pathogenesis of PD is not clear, damage of dopaminergic neurons by oxygen-derived free radicals is considered an important contributing mechanism. This study aimed to evaluate the role of treadmill exercise in male Wister rats as a single treatment and as an aid-therapy with L-dopa for rotenone-induced PD. To study the role of the Nrf2- ARE pathway as a mechanism involved in exercise-associated improvement in rotenone-induced PD in rats. METHOD Animals were divided into 5 groups, (Control, rotenone, rotenone\exercise, rotenone\L-dopa, and rotenone\exercise\L-dopa (combination)groups). After the PD induction, rats in the rotenone\exercise and combination groups were daily treadmill exercised for 4 weeks. RESULTS Treadmill exercise significantly improved behavioral and motor aspects of rotenone-induced PD. When treadmill exercise was introduced as a single intervention, it amended most behavioral aspects of PD, gait fully corrected, short-term memory, and motor coordination. Where L-dopa corrected locomotor activity and motor coordination but failed to improve short-term memory and only partially corrected the gait of rotenone-treated rats. When treadmill exercise was combined with L-dopa, all features of PD were corrected. It was found that exercise upregulated some of its associative genes to Nrf2 pathways such as TFAM, Nrf2 and NQO.1 mRNA expression. CONCLUSION This study suggests that forced exercise improved parkinsonian like features by activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Dina M Monir
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Motamed E Mahmoud
- Department of Animal Behavior and Husbandry (Genetics, Breeding, and Production), Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Omyma G Ahmed
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Menofia, 32511, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
18
|
Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, Antar A, El-Sayed A. Effects of Exercise and Ferulic Acid on Alpha Synuclein and Neuroprotective Heat Shock Protein 70 in An Experimental Model of Parkinsonism Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:156-169. [PMID: 30113007 DOI: 10.2174/1871527317666180816095707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVE This study investigated the effects of ferulic acid (FR), muscle exercise (Ex) and combination of them on rotenone (Rot)-induced Parkinson disease (PD) in mice as well as their underlying mechanisms. METHOD 56 male C57BL/6 mice were allocated into 8 equal groups, 1) Normal control (CTL), 2) FR (mice received FR at 20 mg/kg/day), 3) Ex (mice received swimming Ex) and 4) Ex + FR (mice received FR and Ex), 5) Rot (mice received Rot 3 mg/Kg i.p. for 70 days), 6) ROT+ FR (mice received Rot + FR at 20 mg/kg/day), 7) ROT+ Ex (mice received Rot + swimming Ex) and 8) ROT+ Ex + FR (mice received Rot + FR and Ex). ROT group showed significant impairment in motor performance and significant reduction in tyrosine hydroxylase (TH) density and Hsp70 expression (p< 0.05) with Lewy bodies (alpha synuclein) aggregates in corpus striatum. Also, ROT+FR, ROT+EX and ROT + Ex+ FR groups showed significant improvement in behavioral and biochemical changes, however the effect of FR alone was more potent than Ex alone (p< 0.05) and addition of Ex to FR caused no more significant improvement than FR alone. CONCLUSION We concluded that, FR and Ex improved the motor performance in rotenone-induced PD rodent model which might be due to increased Hsp70 expression and TH density in corpus striatum and combination of both did not offer more protection than FR alone.
Collapse
Affiliation(s)
- Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Soheir F Al-Basiony
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Refka K Meseha
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mohamed M Salama
- Department of Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ashraf Antar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Aya El-Sayed
- MERC, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| |
Collapse
|
19
|
Neuroprotective effect of regular swimming exercise on calretinin-positive striatal neurons of Parkinsonian rats. Anat Sci Int 2020; 95:429-439. [DOI: 10.1007/s12565-020-00538-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/08/2020] [Indexed: 01/29/2023]
|
20
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
21
|
Feng YS, Yang SD, Tan ZX, Wang MM, Xing Y, Dong F, Zhang F. The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci 2020; 245:117345. [PMID: 31981631 DOI: 10.1016/j.lfs.2020.117345] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a significantly progressive neurodegenerative disease characterised by both motor and nonmotor disorders. The main pathological characteristics of PD consist of the loss of dopaminergic neurons and the formation of alpha-synuclein-containing Lewy bodies in the substantia nigra. Currently, the main therapeutic method for PD is anti-Parkinson medications, including levodopa, madopar, sirelin, and so on. However, the effect of pharmacological treatment has its own limitations, the most significant of which is that the therapeutic effect of dopaminergic treatments gradually diminishes with time. Exercise training, as an adjunctive treatment and complementary therapy, can improve the plasticity of cortical striatum and increase the release of dopamine. Exercise training has been proven to effectively improve motor disorders (including balance, gait, risk of falls and physical function) and nonmotor disorders (such as sleep impairments, cognitive function and quality of life) in PD patients. In recent years, various types of exercise training have been used to treat PD. In this review, we summarise the exercise therapy mechanisms and the protective effects of different types of exercise training on PD patients.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Si-Dong Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
22
|
Abstract
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
23
|
Chronic corticosterone aggravates behavioral and neuronal symptomatology in a mouse model of alpha-synuclein pathology. Neurobiol Aging 2019; 83:11-20. [DOI: 10.1016/j.neurobiolaging.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
|
24
|
Liu Y, Yan T, Chu JMT, Chen Y, Dunnett S, Ho YS, Wong GTC, Chang RCC. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. J Transl Med 2019; 99:943-957. [PMID: 30808929 DOI: 10.1038/s41374-019-0232-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growing evidence has shown the beneficial influence of exercise on humans. Apart from classic cardioprotection, numerous studies have demonstrated that different exercise regimes provide a substantial improvement in various brain functions. Although the underlying mechanism is yet to be determined, emerging evidence for neuroprotection has been established in both humans and experimental animals, with most of the valuable findings in the field of mental health, neurodegenerative diseases, and acquired brain injuries. This review will discuss the recent findings of how exercise could ameliorate brain function in neuropathological states, demonstrated by either clinical or laboratory animal studies. Simultaneously, state-of-the-art molecular mechanisms underlying the exercise-induced neuroprotective effects and comparison between different types of exercise will be discussed in detail. A majority of reports show that physical exercise is associated with enhanced cognition throughout different populations and remains as a fascinating area in scientific research because of its universal protective effects in different brain domain functions. This article is to review what we know about how physical exercise modulates the pathophysiological mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ying Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
25
|
Cucarián JD, Berrío JP, Rodrigues C, Zancan M, Wink MR, de Oliveira A. Physical exercise and human adipose-derived mesenchymal stem cells ameliorate motor disturbances in a male rat model of Parkinson's disease. J Neurosci Res 2019; 97:1095-1109. [PMID: 31119788 DOI: 10.1002/jnr.24442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is a disabling and highly costly neurodegenerative condition with worldwide prevalence. Despite advances in treatments that slow progression and minimize locomotor impairments, its clinical management is still a challenge. Previous preclinical studies, using mesenchymal stem cell (MSC) transplantation and isolated physical exercise (EX), reported beneficial results for treatment of PD. Therefore, this experimental randomized study aimed to elucidate the therapeutic potential of combined therapy using adipose-derived human MSCs (ADSCs) grafted into the striatum in conjunction with aerobic treadmill training, specifically in terms of locomotor performance in a unilateral PD rat model induced by 6-hydroxydopamine (6-OHDA). Forty-one male Wistar rats were categorized into five groups in accordance with the type of treatment to which they were subjected (Sham, 6-OHDA - injury, 6-OHDA + exercise, 6-OHDA + cells, and 6-OHDA + combined). Subsequently, dopaminergic depletion was assessed by the methylphenidate challenge and the specified therapeutic intervention was conducted in each group. The foot fault task was performed at the end of the experiment to serve as an assessment of motor skills. The results showed that despite disturbances in motor balance and coordination, locomotor dysfunction was ameliorated in all treatment categories in comparison to the injury group (sign test, p < 0.001, effect size: 0.71). The exercise alone and combined groups were the categories that exhibited the best recovery in terms of movement performance (p < 0.001). Overall, this study confirms that exercise is a powerful option to improve motor function and a promising adjuvant intervention for stem cell transplantation in the treatment of PD motor symptoms. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible at https://figshare.com/s/18a543c101a17a1d5560. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Jaison D Cucarián
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jenny P Berrío
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Cristiano Rodrigues
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Mariana Zancan
- Graduate Course in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alcyr de Oliveira
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.,Graduate Course in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
26
|
Wu C, Yang L, Tucker D, Dong Y, Zhu L, Duan R, Liu TCY, Zhang Q. Beneficial Effects of Exercise Pretreatment in a Sporadic Alzheimer's Rat Model. Med Sci Sports Exerc 2019; 50:945-956. [PMID: 29232315 DOI: 10.1249/mss.0000000000001519] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to examine the effects of swimming exercise pretreatment on a streptozotocin (STZ)-induced sporadic Alzheimer's disease (AD) rat model and provide an initial understanding of related molecular mechanisms. METHODS Male 2.5-month-old Sprague-Dawley rats were divided into the following four groups: (a) control, (b) swim + vehicle, (c) STZ without swim, and (d) swim + STZ. The Barnes maze task and novel object recognition test were used to measure hippocampus-dependent spatial learning and working memory, respectively. Immunofluorescence staining, Western blot analysis, enzyme-linked immunosorbent assay (ELISA) analysis, and related assay kits were used to assess synaptic proteins, inflammatory cytokines, total antioxidant capacity, antioxidant enzymes, amyloid-beta production, and tau hyperphosphorylation. RESULTS Behavioral tests revealed that exercise pretreatment could significantly inhibit STZ-induced cognitive dysfunction (P < 0.05). STZ animals displayed significant loss of presynaptic/postsynaptic markers in the hippocampal CA1 that was reversed by exercise pretreatment (P < 0.05). STZ rats also displayed increased reactive gliosis, release of proinflammatory cytokines, and oxidative damage, effects attenuated by preexercise (P < 0.05, between-treatment changes). Likewise, preexercise significantly induced protein expression (P < 0.001) and DNA-binding activity (P = 0.015) of Nrf2 and downstream antioxidant gene expression in the hippocampal CA1 region (P < 0.05). STZ rats had increased levels of amyloid-beta (1-42) and tau hyperphosphorylation that were significantly ameliorated by exercise (P < 0.05). Histological studies showed that exercise imparted substantial neuroprotection (P < 0.001), suppressing neuronal apoptosis-like cell death in the hippocampal CA1 compared with the STZ control group (P < 0.001). CONCLUSIONS Exercise pretraining exerts multifactorial benefits on AD that support its use as a promising new therapeutic option for prevention of neurodegeneration in the elderly and/or AD population.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Donovan Tucker
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Yan Dong
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Rui Duan
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA.,Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, CHINA
| |
Collapse
|
27
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
28
|
Treadmill Exercise Improves Motor Function by Suppressing Purkinje Cell Loss in Parkinson Disease Rats. Int Neurourol J 2018; 22:S147-155. [PMID: 30396264 PMCID: PMC6234730 DOI: 10.5213/inj.1836226.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Rotenone is the most widely used neurotoxin for the making Parkinson disease (PD) animal model. The neurodegenerative disorder PD shows symptoms, such as slowness of movements, tremor at resting, rigidity, disturbance of gait, and instability of posture. We investigated whether treadmill running improves motor ability using rotenone-caused PD rats. The effect of treadmill running on PD was also assessed in relation with apoptosis of cerebellar Purkinje cells. METHODS Treadmill running was applied to the rats in the exercise groups for 30 minutes once a day for 4 weeks, starting 4 weeks after birth. We used rota-rod test for the determination of motor coordination and balance. In this experiment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, immunohistochemistry for calbindin, glial fibrillary acidic protein (GFAP), Iba-1, and western blot analysis for Bax and Bcl-2 were performed. RESULTS Treadmill running enhanced motor balance and coordination by preventing the loss of Purkinje cells in the cerebellar vermis. Treadmill running suppressed PD-induced expression of GFAP-positive reactive astrocytes and Iba-1-positive microglia, showing that treadmill running suppressed reactive astrogliosis and microglia activation. Treadmill running suppressed TUNEL-positive cell number and Bax expression and enhanced Bcl-2 expression, demonstrating that treadmill running inhibited the progress of apoptosis in the cerebellum of rotenone-induced PD rats. CONCLUSION Treadmill running improved motor ability of the rotenone-induced PD rats by inhibiting apoptosis in the cerebellum. Apoptosis suppressing effect of treadmill running on rotenone-induced PD was achieved via suppression of reactive astrocyte and inhibition of microglial activation.
Collapse
|
29
|
Dexmedetomidine Ameliorates Sleep Deprivation-Induced Depressive Behaviors in Mice. Int Neurourol J 2018; 22:S139-146. [PMID: 30396263 PMCID: PMC6234724 DOI: 10.5213/inj.1836228.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Sleep deprivation induces depressive symptoms. Dexmedetomidine is a α2-adrenoreceptor agonist and this drug possesses sedative, anxiolytic, analgesic, and anesthetic-sparing effect. In this study, the action of dexmedetomidine on sleep deprivation-induced depressive behaviors was investigated using mice. METHODS For the inducing of sleep deprivation, the mice were placed inside a water cage containing 15 platforms and filled with water up to 1 cm below the platform surface for 7 days. One day after sleep deprivation, dexmedetomidine at the respective dosage (0.5, 1, and 2 μg/kg) was intraperitoneally treated into the mice, one time per a day during 6 days. Then, forced swimming test and tail suspension test were conducted. Immunohistochemistry for tyrosine hydroxylase (TH), 5-hydroxytryptamine (5-HT; serotonin), tryptophan hydroxylase (TPH) and western blot for D1 dopamine receptor were also performed. RESULTS Sleep deprivation increased the immobility latency in the forced swimming test and tail suspension test. The expressions of TPH, 5-HT, and D1 dopamine receptor were decreased, whereas, TH expression was increased by sleep deprivation. Dexmedetomidine decreased the immobility latency and increased the expressions of TPH, 5-HT, and D1 dopamine receptor, whereas, HT expression was decreased by dexmedetomidine treatment. CONCLUSION In our results, dexmedetomidine alleviated sleep deprivation-induced depressive behaviors by increasing 5-HT synthesis and by decreasing dopamine production with up-regulation of D1 dopamine receptor.
Collapse
|
30
|
Swimming Exercise and Transient Food Deprivation in Caenorhabditis elegans Promote Mitochondrial Maintenance and Protect Against Chemical-Induced Mitotoxicity. Sci Rep 2018; 8:8359. [PMID: 29844465 PMCID: PMC5974391 DOI: 10.1038/s41598-018-26552-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Exercise and caloric restriction improve health, including reducing risk of cardiovascular disease, neurological disease, and cancer. However, molecular mechanisms underlying these protections are poorly understood, partly due to the cost and time investment of mammalian long-term diet and exercise intervention studies. We subjected Caenorhabditis elegans nematodes to a 6-day, twice daily swimming exercise regimen, during which time the animals also experienced brief, transient food deprivation. Accordingly, we included a non-exercise group with the same transient food deprivation, a non-exercise control with ad libitum access to food, and a group that exercised in food-containing medium. Following these regimens, we assessed mitochondrial health and sensitivity to mitochondrial toxicants. Exercise protected against age-related decline in mitochondrial morphology in body-wall muscle. Food deprivation increased organismal basal respiration; however, exercise was the sole intervention that increased spare respiratory capacity and proton leak. We observed increased lifespan in exercised animals compared to both control and transiently food-deprived nematodes. Finally, exercised animals (and to a lesser extent, transiently food-deprived animals) were markedly protected against lethality from acute exposures to the mitotoxicants rotenone and arsenic. Thus, swimming exercise and brief food deprivation provide effective intervention in C. elegans, protecting from age-associated mitochondrial decline and providing resistance to mitotoxicant exposures.
Collapse
|
31
|
Lee Y, Kim MS, Lee J. Neuroprotective strategies to prevent and treat Parkinson’s disease based on its pathophysiological mechanism. Arch Pharm Res 2017; 40:1117-1128. [DOI: 10.1007/s12272-017-0960-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
|
32
|
Shin MS, Kim TW, Lee JM, Sung YH, Lim BV. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats. J Exerc Rehabil 2017; 13:124-129. [PMID: 28503522 PMCID: PMC5412483 DOI: 10.12965/jer.1734966.483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022] Open
Abstract
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Collapse
Affiliation(s)
- Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yun-Hee Sung
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, Korea
| | - Baek-Vin Lim
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| |
Collapse
|