1
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
2
|
Goto T, Sapio MR, Maric D, Robinson JM, Domenichiello AF, Saligan LN, Mannes AJ, Iadarola MJ. Longitudinal peripheral tissue RNA-Seq transcriptomic profiling, hyperalgesia, and wound healing in the rat plantar surgical incision model. FASEB J 2021; 35:e21852. [PMID: 34499774 PMCID: PMC9293146 DOI: 10.1096/fj.202100347r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Postoperative pain and delayed healing in surgical wounds, which require complex management strategies have understudied complicated mechanisms. Here we investigated temporal changes in behavior, tissue structure, and transcriptomic profiles in a rat model of a surgical incision, using hyperalgesic behavioral tests, histological analyses, and next‐generation RNA sequencing, respectively. The most rapidly (1 hour) expressed genes were the chemokines, Cxcl1 and Cxcl2. Consequently, infiltrating leukocytes were abundantly observed starting at 6 and peaking at 24 hours after incising which was supported by histological analysis and appearance of the neutrophil markers, S100a8 and S100a9. At this time, hyperalgesia was at a peak and overall transcriptional activity was most highly activated. At the 1‐day timepoint, Nppb, coding for natriuretic peptide precursor B, was the most strongly upregulated gene and was localized by in situ hybridization to the epidermal keratinocytes at the margins of the incision. Nppb was basically unaffected in a peripheral inflammation model transcriptomic dataset. At the late phase of wound healing, five secreted, incision‐specific peptidases, Mmp2, Aebp1, Mmp23, Adamts7, and Adamtsl1, showed increased expression, supporting the idea of a sustained tissue remodeling process. Transcripts that are specifically upregulated at each timepoint in the incision model may be potential candidates for either biomarkers or therapeutic targets for wound pain and wound healing. This study incorporates the examination of longitudinal temporal molecular responses, corresponding anatomical localization, and hyperalgesic behavioral alterations in the surgical incision model that together provide important and novel foundational knowledge to understand mechanisms of wound pain and wound healing.
Collapse
Affiliation(s)
- Taichi Goto
- Symptoms Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Robinson
- Translational Life Science Technology Program, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Anthony F Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Leorey N Saligan
- Symptoms Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|