1
|
Rabel K, Nath AJ, Nold J, Spies BC, Wesemann C, Altmann B, Adolfsson E, Witkowski S, Tomakidi P, Steinberg T. Analysis of soft tissue integration-supportive cell functions in gingival fibroblasts cultured on 3D printed biomaterials for oral implant-supported prostheses. J Biomed Mater Res A 2024; 112:1376-1387. [PMID: 38251807 DOI: 10.1002/jbm.a.37675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
To date, it is unknown whether 3D printed fixed oral implant-supported prostheses can achieve comparable soft tissue integration (STI) to clinically established subtractively manufactured counterparts. STI is mediated among others by gingival fibroblasts (GFs) and is modulated by biomaterial surface characteristics. Therefore, the aim of the present work was to investigate the GF response of a 3D printed methacrylate photopolymer and a hybrid ceramic-filled methacrylate photopolymer for fixed implant-supported prostheses in the sense of supporting an STI. Subtractively manufactured samples made from methacrylate polymer and hybrid ceramic were evaluated for comparison and samples from yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), comprising well documented biocompatibility, served as control. Surface topography was analyzed by scanning electron microscopy and interferometry, elemental composition by energy-dispersive x-ray spectroscopy, and wettability by contact angle measurement. The response of GFs obtained from five donors was examined in terms of membrane integrity, adhesion, morphogenesis, metabolic activity, and proliferation behavior by a lactate-dehydrogenase assay, fluorescent staining, a resazurin-based assay, and DNA quantification. The results revealed all surfaces were smooth and hydrophilic. GF adhesion, metabolic activity and proliferation were impaired by 3D printed biomaterials compared to subtractively manufactured comparison surfaces and the 3Y-TZP control, whereas membrane integrity was comparable. Within the limits of the present investigation, it was concluded that subtractively manufactured surfaces are superior compared to 3D printed surfaces to support STI. For the development of biologically optimized 3D printable biomaterials, consecutive studies will focus on the improvement of cytocompatibility and the synthesis of STI-relevant extracellular matrix constituents.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amélie Joséphine Nath
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Nold
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Wesemann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- G.E.R.N Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production-RISE Research Institutes of Sweden, Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Kokozidou M, Gögele C, Pirrung F, Hammer N, Werner C, Kohl B, Hahn J, Breier A, Schröpfer M, Meyer M, Schulze-Tanzil G. In vivo ligamentogenesis in embroidered poly(lactic-co-ε-caprolactone) / polylactic acid scaffolds functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams. Histochem Cell Biol 2023; 159:275-292. [PMID: 36309635 PMCID: PMC10006054 DOI: 10.1007/s00418-022-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or F combined with the foam (F + coll). Cell-free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, cell vitality and content, histo(patho)logy of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.Scaffolds did not affect mice weight development and organs, indicating no organ toxicity. Moreover, scaffolds maintained their size and shape and reflected a high cell viability prior to and following implantation. Coll or F + coll scaffolds seeded with cells yielded superior macroscopic properties compared to the controls. Mild signs of inflammation (foreign-body giant cells and hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable after explantation, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in explanted scaffolds compared to those before implantation, with no significant differences between scaffold subtypes, except for a higher maximum force in F + coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. a Lapine anterior cruciate ligament (LACL): red arrow, posterior cruciate ligament: yellow arrow. Medial anterior meniscotibial ligament: black arrow. b Explant culture to isolate LACL fibroblasts. c Scaffold variants: co: controls; F: functionalization by gas-phase fluorination; coll: collagen foam cross-linked with hexamethylene diisocyanate (HMDI). c1-2 Embroidery pattern of the scaffolds. d Scaffolds were seeded with LACL fibroblasts using a dynamical culturing approach as depicted. e Scaffolds were implanted subnuchally into nude mice, fixed at the nuchal ligament and sacrospinal muscle tendons. f Two weeks after implantation. g Summary of analyses performed. Scale bars 1 cm (b, d), 0.5 cm (c). (sketches drawn by G.S.-T. using Krita 4.1.7 [Krita foundation, The Netherlands]).
Collapse
Affiliation(s)
- Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Felix Pirrung
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187, Dresden, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Judith Hahn
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Annette Breier
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.
| |
Collapse
|
3
|
In vitro evaluation of a synthetic (Biobrane®) and a biopolymer (Epicite) wound dressing with primary human juvenile and adult fibroblasts after different colonization strategies. Ann Anat 2022; 244:151981. [PMID: 35853533 DOI: 10.1016/j.aanat.2022.151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The three-dimensional [3D] wound dressings Biobrane® and Epicite are used in the wound management. Fibroblasts are important for successful deep wound healing. The direct effect of Biobrane® and Epicite on human fibroblasts, particularly of juvenile individuals, remains unclear. Therefore, this study compared the survival and growth characteristics of juvenile and adult dermal fibroblasts on Biobrane® and Epicite using different culture models. METHOD Murine (L929), primary juvenile and adult human fibroblasts were seeded on both materials using two dimensional (2D, slide culture) or 3D culture at the medium-air interface and dynamical rotatory culture. Cell adherence, viability, morphology, actin cytoskeleton architecture and DNA content were monitored. Scanning electron microscopy (SEM) analyses could be only performed from Biobrane®. Permeability of both materials were tested. RESULTS The majority of all tested fibroblasts species survived on both dressings with no significant differences between 1 and 14 days. Juvenile and adult fibroblasts exerted typical fibroblast morphology with spindle-shaped cell bodies on the materials. SEM visualized morphological differences between murine and human fibroblasts on Biobrane®. Juvenile and adult fibroblasts colonized Biobrane® in rotatory culture after 7 days the most. The Biobrane® rotatory culture of L929 and juvenile fibroblasts showed after 7 days the significantly highest DNA amount. No major gender differences could be observed. Biobrane® had a higher permeability than Epicite. CONCLUSION Both wound dressing can be colonized by fibroblasts suggesting their high cytocompatibility. Fibroblast survival and morphology on Biobrane® and Epicite depended on the culture system and the fibroblast source.
Collapse
|