1
|
Xu Z, Geng X, Ye L, Li L, Xing Y, Cheng J, Wang C, Gu Y, Tong Z, Guo L. Application of subcutaneous extracellular matrix to prepare bilayer heparin-coated polycaprolactone/decellularized small-diameter vascular graft for tissue regeneration. Int J Biol Macromol 2024; 289:138705. [PMID: 39675596 DOI: 10.1016/j.ijbiomac.2024.138705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In clinical practice, the demand for functional small-diameter vascular grafts continues to increase. In this study, a decellularized aorta artery was inserted into a poly(caprolactone) (PCL) vascular scaffold for self-assembly in-vitro to create a hybrid scaffold. The hybrid scaffold was then implanted subcutaneously into the dorsal flanks and the subcutaneous extracellular matrix was applied for bilayer adhesion. After decellularization, the hybrid scaffold was coated with heparin to prepare a bilayer tissue-engineered vascular graft (BTEVG). The BTEVG exhibited enhanced biomechanical properties compared with those of decellularized tissue. The bilayer scaffold remained patent and displayed no expansion or aneurysm after implantation at 2 months. Endothelial cell formation was observed on the neointimal surface. In the neointimal, decellularized tissue in the inner layer inhibited smooth muscle cells proliferation and neointimal hyperplasia of BTEVG. M2 macrophage cell proliferation in the neointimal may inhibit vascular smooth muscle cell proliferation. Although the PCL-H scaffold demonstrated calcification formation, no calcification was found in the BTEVG. Therefore, BTEVGs can be applied for rapid remodeling of small-diameter blood vessels.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China
| | - Xue Geng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Ye
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liqiang Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045,China
| | - Jin Cheng
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China.
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China.
| |
Collapse
|
2
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Lee SK, Kam EH, Cheon SY. Autophagy Enhancers Regulate Cholesterol-Induced Cytokine Secretion and Cytotoxicity in Macrophages. J Lipid Atheroscler 2023; 12:189-200. [PMID: 37265848 PMCID: PMC10232223 DOI: 10.12997/jla.2023.12.2.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Hypercholesterolaemia transforms macrophages into lipid-laden foam cells in circulation, which can activate the immune response. Compromised autophagy and inflammatory cytokines are involved in the pathogenesis and progression of metabolic diseases. The aim of this study was to identify the role of autophagy as a modulator of the inflammatory response and cytotoxicity in macrophages under hypercholesterolaemic conditions. Methods High cholesterol-induced cytokine secretion and alteration of autophagy-associated molecules were confirmed by cytokine array and western blot analysis, respectively. To confirm whether autophagic regulation affects high cholesterol-induced cytokine release and cytotoxicity, protein levels of autophagic molecules, cell viability, and cytotoxicity were measured in cultured macrophages treated autophagy enhancers. Results Cholesterol treatment increased cytokine secretion, cellular toxicity, and lactate dehydrogenase release in lipopolysaccharide (LPS)-primed macrophages. Concomitantly, altered levels of autophagy-related molecules were detected in LPS-primed macrophages under hypercholesterolaemic conditions. Treatment with autophagy enhancers reversed the secretion of cytokines, abnormally expressed autophagy-associated molecules, and cytotoxicity of LPS-primed macrophages. Conclusion Autophagy enhancers inhibit inflammatory cytokine secretion and reduce cytotoxicity under metabolic disturbances, such as hypercholesterolaemia. Modulation of autophagy may be a novel approach to control the inflammatory response observed in metabolic diseases.
Collapse
Affiliation(s)
- Su Kyoung Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hee Kam
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju, Korea
| |
Collapse
|
4
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
5
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
6
|
Oost LJ, Tack CJ, de Baaij JHF. Hypomagnesemia and Cardiovascular Risk in Type 2 Diabetes. Endocr Rev 2022; 44:357-378. [PMID: 36346820 PMCID: PMC10166267 DOI: 10.1210/endrev/bnac028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Hypomagnesemia is tenfold more common in individuals with type 2 diabetes (T2D), compared to the healthy population. Factors that are involved in this high prevalence are low Mg2+ intake, gut microbiome composition, medication use and presumably genetics. Hypomagnesemia is associated with insulin resistance, which subsequently increases the risk to develop T2D or deteriorates glycaemic control in existing diabetes. Mg2+ supplementation decreases T2D associated features like dyslipidaemia and inflammation; which are important risk factors for cardiovascular disease (CVD). Epidemiological studies have shown an inverse association between serum Mg2+ and the risk to develop heart failure (HF), atrial fibrillation (AF) and microvascular disease in T2D. The potential protective effect of Mg2+ on HF and AF may be explained by reduced oxidative stress, fibrosis and electrical remodeling in the heart. In microvascular disease, Mg2+ reduces the detrimental effects of hyperglycemia and improves endothelial dysfunction. Though, clinical studies assessing the effect of long-term Mg2+ supplementation on CVD incidents are lacking and gaps remain on how Mg2+ may reduce CVD risk in T2D. Despite the high prevalence of hypomagnesemia in people with T2D, routine screening of Mg2+ deficiency to provide Mg2+ supplementation when needed is not implemented in clinical care as sufficient clinical evidence is lacking. In conclusion, hypomagnesemia is common in people with T2D and is both involved as cause, probably through molecular mechanisms leading to insulin resistance, and consequence and is prospectively associated with development of HF, AF and microvascular complications. Whether long-term supplementation of Mg2+ is beneficial, however, remains to be determined.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Chen J, Wang W, Ni Q, Zhang L, Guo X. Interleukin 6-regulated macrophage polarization controls atherosclerosis-associated vascular intimal hyperplasia. Front Immunol 2022; 13:952164. [PMID: 35967343 PMCID: PMC9363591 DOI: 10.3389/fimmu.2022.952164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular intimal hyperplasia (VIH) is an important stage of atherosclerosis (AS), in which macrophages not only play a critical role in local inflammation, but also transform into foam cells to participate into plaque formation, where they appear to be heterogeneous. Recently, it was shown that CD11c+ macrophages were more associated with active plaque progression. However, the molecular regulation of phenotypic changes of plaque macrophages during VIH has not been clarified and thus addressed in the current study. Since CD11c- cells were M2a-polarized anti-inflammatory macrophages, while CD11c+ cells were M1/M2b-polarized pro-inflammatory macrophages, we used bioinformatics tools to analyze the CD11c+ versus CD11c- plaque macrophages, aiming to detect the differential genes associated with M1/M2 macrophage polarization. We obtained 122 differential genes that were significantly altered in CD11c+ versus CD11c- plaque macrophages, regardless of CD11b expression. Next, hub genes were predicted in these 122 genes, from which we detected 3 candidates, interleukin 6 (Il6), Decorin (Dcn) and Tissue inhibitor matrix metalloproteinase 1 (Timp1). The effects of these 3 genes on CD11c expression as well as on the macrophage polarization were assessed in vitro, showing that only expression of Il6, but not expression of Dcn or Timp1, induced M1/M2b-like polarization in M2a macrophages. Moreover, only suppression of Il6, but not suppression of either of Dcn or Timp1, induced M2a-like polarization in M1/M2b macrophages. Furthermore, pharmaceutical suppression of Il6 attenuated VIH formation and progression of AS in a mouse model that co-applied apolipoprotein E-knockout and high-fat diet. Together, our data suggest that formation of VIH can be controlled through modulating macrophage polarization, as a promising therapeutic approach for prevent AS.
Collapse
|
8
|
Zhao Q, Wang Z, Meyers AK, Madenspacher J, Zabalawi M, Zhang Q, Boudyguina E, Hsu FC, McCall CE, Furdui CM, Parks JS, Fessler MB, Zhu X. Hematopoietic Cell-Specific SLC37A2 Deficiency Accelerates Atherosclerosis in LDL Receptor-Deficient Mice. Front Cardiovasc Med 2021; 8:777098. [PMID: 34957260 PMCID: PMC8702732 DOI: 10.3389/fcvm.2021.777098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming in vitro. Whether macrophage SLC37A2 impacts in vivo macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown. We generated hematopoietic cell-specific SLC37A2 knockout and control mice in C57Bl/6 Ldlr−/− background by bone marrow transplantation. Hematopoietic cell-specific SLC37A2 deletion in Ldlr−/− mice increased plasma lipid concentrations after 12-16 wks of Western diet induction, attenuated macrophage anti-inflammatory responses, and resulted in more atherosclerosis compared to Ldlr−/− mice transplanted with wild type bone marrow. Aortic root intimal area was inversely correlated with plasma IL-10 levels, but not total cholesterol concentrations, suggesting inflammation but not plasma cholesterol was responsible for increased atherosclerosis in bone marrow SLC37A2-deficient mice. Our in vitro study demonstrated that SLC37A2 deficiency impaired IL-4-induced macrophage activation, independently of glycolysis or mitochondrial respiration. Importantly, SLC37A2 deficiency impaired apoptotic cell-induced glycolysis, subsequently attenuating IL-10 production. Our study suggests that SLC37A2 expression is required to support alternative macrophage activation in vitro and in vivo. In vivo disruption of hematopoietic SLC37A2 accelerates atherosclerosis under hyperlipidemic pro-atherogenic conditions.
Collapse
Affiliation(s)
- Qingxia Zhao
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Zhan Wang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allison K Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jennifer Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Qianyi Zhang
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Elena Boudyguina
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Gautier EL, Askia H, Murcy F, Yvan-Charvet L. Macrophage ontogeny and functional diversity in cardiometabolic diseases. Semin Cell Dev Biol 2021; 119:119-129. [PMID: 34229949 DOI: 10.1016/j.semcdb.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France.
| | - Haoussa Askia
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
10
|
Influence of Disorders of Fatty Acid Metabolism, Arterial Wall Hypoxia, and Intraplaque Hemorrhages on Lipid Accumulation in Atherosclerotic Vessels. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review describes a number of competing views on the main causes of cholesterol accumulation in atherosclerotic vessels. On the one hand, unregulated cholesterol influx into arterial intima is primarily related to the increasing proportion of atherogenic lipoproteins in the lipoprotein spectrum of blood. On the other hand, the leading role in this process is assigned to the increased permeability of endothelium for atherogenic lipoproteins. The increased ability of arterial intima connective tissue to bind atherogenic blood lipoproteins is also considered to be the leading cause of cholesterol accumulation in the vascular wall. The key role in cholesterol accumulation is also assigned to unregulated (by a negative feedback mechanism) absorption of atherogenic lipoproteins by foam cells. It is suggested that the main cause of abundant cholesterol accumulation in atherosclerotic vessels is significant inflow of this lipid into the vascular wall during vasa vasorum hemorrhages.The article also provides arguments, according to which disorder of fatty acid metabolism in arterial wall cells can initiate accumulation of neutral lipids in them, contribute to the inflammation and negatively affect the mechanical conditions around the vasa vasorum in the arterial walls. As a result, the impact of pulse waves on the luminal surface of the arteries will lead to frequent hemorrhages of these microvessels. At the same time, adaptive-muscular intima hyperplasia, which develops in arterial channel areas subjected to high hemodynamic loads, causes local hypoxia in a vascular wall. As a result, arterial wall cells undergo even more severe lipid transformation. Hypoxia also stimulates vascularization of the arterial wall, which contributes to hemorrhages in it. With hemorrhages, free erythrocyte cholesterol penetrates into the forming atherosclerotic plaque, a part of this cholesterol forms cholesterol esters inside the arterial cells. The saturation of erythrocyte membranes with this lipid in conditions of hypercholesterolemia and atherogenic dyslipoproteinemia contributes to the process of cholesterol accumulation in arteries.
Collapse
|
11
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
12
|
Abstract
The endothelium is a crucial regulator of vascular homeostasis by controlling barrier integrity as well acting as an important signal transducer, thereby illustrating that endothelial cells are not inert cells. In the context of atherosclerosis, this barrier function is impaired and endothelial cells become activated, resulting in the upregulation of adhesion molecules, secretion of cytokines and chemokines and internalization of integrins. Finally, this leads to increased vessel permeability, thereby facilitating leukocyte extravasation as well as fostering a pro-inflammatory environment. Additionally, activated endothelial cells can form migrating tip cells and proliferative stalk cells, resulting in the formation of new blood vessels. Emerging evidence has accumulated indicating that cellular metabolism is crucial in fueling these pro-atherosclerotic processes, including neovascularization and inflammation, thereby contributing to plaque progression and altering plaque stability. Therefore, further research is necessary to unravel the complex mechanisms underlying endothelial cell metabolic changes, and exploit this knowledge for finding and developing potential future therapeutic strategies. In this review we discuss the metabolic alterations endothelial cells undergo in the context of inflammation and atherosclerosis and how this relates to changes in endothelial functioning. Finally, we will describe several metabolic targets that are currently being used for therapeutic interventions.
Collapse
|
13
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
15
|
Association between noninvasive assessment of liver fibrosis and coronary artery calcification progression in patients with nonalcoholic fatty liver disease. Sci Rep 2020; 10:18323. [PMID: 33110139 PMCID: PMC7591518 DOI: 10.1038/s41598-020-75266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced liver fibrosis and coronary artery calcification (CAC) progression has been reported to correlate with cardiovascular disease. This study investigated the association between noninvasive liver fibrosis score and CAC progression in patients with nonalcoholic fatty liver disease (NAFLD). We included 1173 asymptomatic adults with CAC scores from 2007–2013. CAC progression was defined as newly incident CAC or a ≥ 2.5-unit increase in the final CAC score square root. Liver fibrosis was assessed using fibrosis-4 index (FIB-4) score and NAFLD fibrosis score (NFS). A total of 293 (25.0%) subjects developed CAC. Mean baseline FIB-4 score was significantly higher in subjects with CAC. CAC progressed in 20.5% of subjects without NAFLD, 27.5% of those with NAFLD and low FIB-4 scores, and 35.9% of those with NAFLD and intermediate/high FIB-4 scores. On multivariate logistic regression analysis, the odds ratio for CAC progression was 1.70 (95% confidence interval, 1.12–2.58) for subjects with NAFLD plus intermediate/high FIB-4 scores versus those without NAFLD. In the sensitivity analysis, the odds ratio for CAC progression was 1.57 (95% confidence interval, 1.02–2.44) for subjects with NAFLD plus an intermediate/high NFS versus those without NAFLD. Advanced liver fibrosis stage assessed using noninvasive markers is associated with a higher risk of CAC progression in subjects with NAFLD.
Collapse
|