1
|
Ohno M, Nishida A, Otsuki A, Yokota Y, Imai T, Bamba S, Inatomi O. Leucine-rich alpha-2 glycoprotein as a superior biomarker to C-reactive protein for detecting small bowel lesions in Crohn's disease. World J Gastrointest Endosc 2025; 17:100793. [PMID: 39989852 PMCID: PMC11843037 DOI: 10.4253/wjge.v17.i2.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Achievement of endoscopic healing (EH) is significant in the clinical practice of inflammatory bowel disease as it is correlated with improved prognosis. Existing biomarkers, including C-reactive protein (CRP), have relatively low accuracy for predicting EH, especially in small intestinal lesions in Crohn's disease (CD); thus, noninvasive and more accurate biomarkers are required. Leucine-rich alpha-2 glycoprotein (LRG), a 50-kD protein, is produced under inflammatory conditions and has been reported to be useful in assessing disease activity in inflammatory bowel disease. However, the usefulness of LRG in small intestinal lesions in CD remains inconclusive. AIM To determine the usefulness of LRG for EH in small bowel lesions in CD and compare it with CRP. METHODS This study included 133 consecutive patients with CD who underwent balloon-assisted enteroscopy between June 2021 and March 2024 at Shiga University of Medical Science Hospital (Otsu, Japan). We retrospectively analyzed endoscopic scores in each of the ileum and colon and four markers including LRG, CRP, albumin, and Harvey-Bradshaw index (HBI). Spearman's rank correlation coefficient and receiver operating characteristic analysis were performed. RESULTS Either active ileal or colonic lesions exhibited significant differences in LRG, CRP, albumin, and HBI compared with EH. CRP, albumin, and HBI showed a worse correlation with endoscopic activity in the ileum than that in the colon; however, LRG did not show a worse correlation (colon, r = 0.5218; ileum, r = 0.5602). Receiver operating characteristic analysis revealed that LRG for EH in the ileum and colon had the same cutoff values of 12.4 μg/mL. Comparing the areas under the curve of LRG and CRP for predicting EH in the ileum revealed a significantly higher areas under the curve of LRG (95% confidence interval, 0.017-0.194; P = 0.024), whereas the two showed no significant difference in the colon. CONCLUSION LRG is a useful biomarker in assessing the endoscopic activity of CD and is more useful than CRP in the small intestine.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Akinori Otsuki
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Yoshihiro Yokota
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Shigeki Bamba
- Department of Fundamental Nursing, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| |
Collapse
|
2
|
Guo Z, He M, Shao L, Li Y, Xiang X, Wang Q. The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease. J Cancer Res Ther 2024; 20:1964-1973. [PMID: 39792405 DOI: 10.4103/jcrt.jcrt_33_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/02/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT. In recent years, fecal microbiota transplantation (FMT) has been attempted as an emerging treatment method for various diseases, including aGVHD after HSCT. Studies have shown encouraging preliminary clinical results after the application of FMT in aGVHD, particularly steroid-resistant aGVHD. Additionally, several studies have demonstrated that the gut microbiota plays an important immunomodulatory role in the pathogenesis of GVHD. Consensus guidelines recommend FMT as a secondary option for the treatment of aGVHD. This article aims to review FMT treatment for GI-aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Zhi Guo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Li
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tercero-Guerrero D, Blanco JL, Hernández M, Torre-Fuentes L, Alvarez J, García ME. Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BMC Vet Res 2024; 20:479. [PMID: 39434132 PMCID: PMC11492571 DOI: 10.1186/s12917-024-04332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.
Collapse
Affiliation(s)
- Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain.
| | - Marta Hernández
- Area of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Julio Alvarez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| |
Collapse
|
4
|
Zhang W, Zhong Y, Wang Z, Tang F, Zheng C. Apple polysaccharide improves age-matched cognitive impairment and intestinal aging through microbiota-gut-brain axis. Sci Rep 2024; 14:16215. [PMID: 39003416 PMCID: PMC11246462 DOI: 10.1038/s41598-024-67132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuchun Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China.
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
5
|
Kotlyarov S. Importance of the gut microbiota in the gut-liver axis in normal and liver disease. World J Hepatol 2024; 16:878-882. [PMID: 38948437 PMCID: PMC11212653 DOI: 10.4254/wjh.v16.i6.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The gut microbiota is of growing interest to clinicians and researchers. This is because there is a growing understanding that the gut microbiota performs many different functions, including involvement in metabolic and immune processes that are systemic in nature. The liver, with its important role in detoxifying and metabolizing products from the gut, is at the forefront of interactions with the gut microbiota. Many details of these interactions are not yet known to clinicians and researchers, but there is growing evidence that normal gut microbiota function is important for liver health. At the same time, factors affecting the gut microbiota, including nutrition or medications, may also have an effect through the gut-liver axis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia.
| |
Collapse
|
6
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
7
|
Shang Z, Pai L, Patil S. Unveiling the dynamics of gut microbial interactions: a review of dietary impact and precision nutrition in gastrointestinal health. Front Nutr 2024; 11:1395664. [PMID: 38873568 PMCID: PMC11169903 DOI: 10.3389/fnut.2024.1395664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
The human microbiome, a dynamic ecosystem within the gastrointestinal tract, plays a pivotal role in shaping overall health. This review delves into six interconnected sections, unraveling the intricate relationship between diet, gut microbiota, and their profound impact on human health. The dance of nutrients in the gut orchestrates a complex symphony, influencing digestive processes and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional communication between the gut and the brain, the Brain-Gut Axis section highlights the crucial role of dietary choices in physical, mental, and emotional well-being. Autoimmune diseases, particularly those manifesting in the gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome imbalances. Strategies for reconciling gut microbes through diets, precision nutrition, and clinical indications showcase promising avenues for managing gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP diet to neuro-gut interventions, these strategies provide a holistic understanding of the gut's dynamic world. Precision nutrition, as a groundbreaking discipline, holds transformative potential by tailoring dietary recommendations to individual gut microbiota compositions, reshaping the landscape of gastrointestinal health. Recent advancements in clinical indications, including exact probiotics, fecal microbiota transplantation, and neuro-gut interventions, signify a new era where the gut microbiome actively participates in therapeutic strategies. As the microbiome takes center stage in healthcare, a paradigm shift toward personalized and effective treatments for gastrointestinal disorders emerges, reflecting the symbiotic relationship between the human body and its microbial companions.
Collapse
Affiliation(s)
- Zifang Shang
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liu Pai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Zhang Z, Wang X, Li F. An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota. Front Microbiol 2023; 14:1072151. [PMID: 36778853 PMCID: PMC9909292 DOI: 10.3389/fmicb.2023.1072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.
Collapse
Affiliation(s)
- Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
9
|
Schwarz A, Philippsen R, Piticchio SG, Hartmann JN, Häsler R, Rose-John S, Schwarz T. Crosstalk between microbiome, regulatory T cells and HCA2 orchestrates the inflammatory response in a murine psoriasis model. Front Immunol 2023; 14:1038689. [PMID: 36891315 PMCID: PMC9986334 DOI: 10.3389/fimmu.2023.1038689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The organ-specific microbiome plays a crucial role in tissue homeostasis, among other things by inducing regulatory T cells (Treg). This applies also to the skin and in this setting short chain fatty acids (SCFA) are relevant. It was demonstrated that topical application of SCFA controls the inflammatory response in the psoriasis-like imiquimod (IMQ)-induced murine skin inflammation model. Since SCFA signal via HCA2, a G-protein coupled receptor, and HCA2 expression is reduced in human lesional psoriatic skin, we studied the effect of HCA2 in this model. HCA2 knock-out (HCA2-KO) mice reacted to IMQ with stronger inflammation, presumably due to an impaired function of Treg. Surprisingly, injection of Treg from HCA2-KO mice even enhanced the IMQ reaction, suggesting that in the absence of HCA2 Treg switch from a suppressive into a proinflammatory type. HCA2-KO mice differed in the composition of the skin microbiome from wild type mice. Co-housing reversed the exaggerated response to IMQ and prevented the alteration of Treg, implying that the microbiome dictates the outcome of the inflammatory reaction. The switch of Treg into a proinflammatory type in HCA2-KO mice could be a downstream phenomenon. This opens the opportunity to reduce the inflammatory tendency in psoriasis by altering the skin microbiome.
Collapse
Affiliation(s)
- Agatha Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Rebecca Philippsen
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Serena G Piticchio
- Institute of Clinical Molecular Biology (IKMB), University Kiel, Kiel, Germany.,Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Jan N Hartmann
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Robert Häsler
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | | | - Thomas Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| |
Collapse
|