1
|
Dejour DH, de Sanctis EG, Müller JH, Deroche E, Pineda T, Guarino A, Toanen C. Adapting the Dejour classification of trochlear dysplasia from qualitative radiograph- and CT-based assessments to quantitative MRI-based measurements. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39555850 DOI: 10.1002/ksa.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To adapt the current D. Dejour trochlear dysplasia classification (v2.0) to only rely on quantitative magnetic resonance imaging (MRI) measurements (v3.0) to maximize objectivity and repeatability. METHODS A consecutive series of adult knee MRIs were divided into objective patellar instability (OPI, n = 127) or controls (n = 103; isolated meniscal tears) and postprocessed with multiplanar reconstruction (MPR) to standardize the sagittal plane and ensure true lateral views. Thresholds for sulcus angle, lateral trochlear inclination (LTI) and central bump were established using regression tree models to distinguish OPI from controls. The sensitivity and specificity of sulcus angle and LTI combinations to diagnose OPI were then evaluated, and the combination yielding the highest sensitivity was selected as basis for trochlear dysplasia classification. Finally, sulcus angle and LTI measurability and presence of a central bump >5 mm were used to grade dysplasia as low, moderate or high. RESULTS The regression tree models produced thresholds of ≥157° for sulcus angle and <14° for LTI to distinguish OPI from controls. 'Sulcus angle ≥157° OR LTI < 14°' yielded the highest sensitivity (87%) to diagnose OPI. The quantitative MRI classification was sulcus angle <157° AND LTI ≥ 14° for Type 0 (No dysplasia); (sulcus angle ≥ 157° OR LTI < 14°) AND central bump <5 mm for Type 1 (Low-grade dysplasia); (sulcus angle OR LTI are 'unmeasurable') AND central bump <5 mm for Type 2 (Moderate-grade dysplasia); (sulcus angle ≥ 157° OR 'unmeasurable' OR LTI < 14° OR 'unmeasurable') AND central bump ≥5 mm for Type 3 (High-grade dysplasia). CONCLUSION This MRI classification depends exclusively on quantitative measurements, has excellent interobserver agreement, and yields high sensitivity to diagnose OPI. The MRI imaging protocol with MPR mode and standardized measurements could be quickly adopted and correctly applied by clinicians worldwide in any type of institution to determine the ideal treatment plan. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- David H Dejour
- Lyon-Ortho-Clinic, Clinique de la Sauvegarde, Ramsay Santé, Lyon, France
| | | | | | | | - Tomas Pineda
- Lyon-Ortho-Clinic, Clinique de la Sauvegarde, Ramsay Santé, Lyon, France
| | - Amedeo Guarino
- Lyon-Ortho-Clinic, Clinique de la Sauvegarde, Ramsay Santé, Lyon, France
| | - Cécile Toanen
- Département de Chirurgie Orthopédique, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| |
Collapse
|
2
|
Yuandani, Jantan I, Haque MA, Rohani AS, Nugraha SE, Salim E, Septama AW, Juwita NA, Khairunnisa NA, Nasution HR, Utami DS, Ibrahim S. Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: a review. Front Pharmacol 2023; 14:1222195. [PMID: 37533631 PMCID: PMC10391552 DOI: 10.3389/fphar.2023.1222195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Zingiber and Alpinia species (family: Zingiberaceae) are popularly used in food as spices and flavoring agents and in ethnomedicine to heal numerous diseases, including immune-related disorders. However, their ethnomedicinal uses have not been sufficiently supported by scientific investigations. Numerous studies on the modulating effects of plants and their bioactive compounds on the different steps of the immune system have been documented. This review aimed to highlight up-to-date research findings and critically analyze the modulatory effects and mechanisms of the extracts and secondary compounds of several Zingiber and Alpinia species, namely, Zingiber officinale Roscoe, Z. cassumunar Roxb., Z. zerumbet (L.) Roscoe ex Sm., Alpinia galanga Linn., A. conchigera Griff, A. katsumadai Hayata, A. oxyphylla Miq., A. officinarum Hance, A. zerumbet (Pers.) Burtt. et Smith, and A. purpurata (Viell.) K. Schum. on the immune system, particularly via the inflammation-related signaling pathways. The immunomodulating activities of the crude extracts of the plants have been reported, but the constituents contributing to the activities have mostly not been identified. Among the extracts, Z. officinale extracts were the most investigated for their in vitro, in vivo, and clinical effects on the immune system. Among the bioactive metabolites, 6-, 8-, and 10-gingerols, 6-shogaol, and zerumbone from Zingiber species and cardamomin, 1'-acetoxychavicol acetate, yakuchinone, rutin, 1,8-cineole, and lectin from Alpinia species have demonstrated strong immunomodulating effects. More experimental studies using cell and animal models of immune-related disorders are necessary to further understand the underlying mechanisms, together with elaborate preclinical pharmacokinetics, pharmacodynamics, bioavailability, and toxicity studies. Many of these extracts and secondary metabolites are potential candidates for clinical development in immunomodulating agents or functional foods to prevent and treat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md. Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ade Sri Rohani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Bogor, Indonesia
| | - Nur Aira Juwita
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Dinda Sari Utami
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|