1
|
Kosmas CE, Sourlas A, Oikonomakis K, Zoumi EA, Papadimitriou A, Kostara CE. Biomarkers of insulin sensitivity/resistance. J Int Med Res 2024; 52:03000605241285550. [PMCID: PMC11475114 DOI: 10.1177/03000605241285550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, remarkable advancements in elucidating the intricate molecular underpinnings of type 2 diabetes mellitus (T2D) have been achieved. Insulin resistance (IR) has been unequivocally acknowledged as the driving pathogenetic mechanism of T2D, preceding disease onset by several years. Nonetheless, diagnostic tools for ascertaining IR are lacking in current clinical practice, representing a critical unmet need; use of the hyperinsulinemic-euglycemic glucose clamp, widely accepted as the gold standard method for evaluating IR at present, is cumbersome in a clinical setting. Thus, the development of well-validated, reliable, and affordable biomarkers of IR has attracted considerable attention from the research community. The biomarkers under investigation can be divided into two major categories: (1) indices or ratios, comprising parameters obtained from a basic or comprehensive metabolic panel and/or derived from anthropometric measurements, and (2) circulating molecules implicated in pathophysiological processes associated with IR. Furthermore, numerous novel biomarkers, including markers of β-cell dysfunction, radiographic quantification of excess visceral adipose tissue, T2D prediction models, certain microRNAs and metabolomic biomarkers, have also provided promising preliminary results. This narrative review aims to present current evidence pertaining to the most notable and exciting biomarkers of IR that are under rigorous evaluation.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Second Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | - Christina E Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
3
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
4
|
Tian F, Guo Y, Zhou L, Yao Q, Liang X, Lu J, He A, Shen J. Comparison of glimepiride and linagliptin in the treatment of non-alcoholic hepatic disease with type 2 diabetes mellitus. Arch Med Sci 2023; 20:1407-1415. [PMID: 39649269 PMCID: PMC11623139 DOI: 10.5114/aoms/161228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/14/2023] [Indexed: 12/10/2024] Open
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes mellitus (T2DM) is associated with severe clinical outcomes. MicroRNA (miR)-210 has been reported to be related to T2DM and lipid metabolism. This study aimed to determine whether miR-210 can predict the effects of glimepiride and linagliptin on NAFLD with T2DM. Material and methods A total of 86 patients with NAFLD with T2DM were randomly categorized into two groups and treated with either linagliptin (5 mg/daily) or glimepiride (2 mg/daily) for 6 months. Furthermore, real-time quantitative polymerase chain reaction was used to evaluate the expression level of miR-210 in the patients' serum. Results Compared with glimepiride, linagliptin was able to significantly reduce the fasting blood glucose level (p = 0.039). Moreover, the expression level of miR-210 was positively correlated with fasting blood glucose level (r = 0.272, p = 0.011) and 2 h post-breakfast blood glucose level (r = 0.245, p = 0.023). The fasting insulin level was negatively correlated with the expression level of miR-210 (r = -0.224, p = 0.038). Also, the alanine transaminase (ALT) level (r = 0.438, p < 0.001) and ALT/aspartate aminotransferase ratio (r = 0.382, p < 0.001) were positively correlated with miR-210 expression. Conclusions Linagliptin was not significantly different from glimepiride in improving the hepatic and renal functions and in reducing the blood lipid level. miR-210 expression was linked to blood glucose and lipid levels and hepatic function, which indicates its role as a prognostic biomarker in the treatment of NAFLD with T2DM using linagliptin and glimepiride.
Collapse
Affiliation(s)
- Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
- Department of Endocrinology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Yali Guo
- Department of Endocrinology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Liping Zhou
- Health Management Division, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
| | - Qunying Yao
- Department of Endocrinology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Xiaoyan Liang
- Health Management Division, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
| | - Jiaxin Lu
- Health Management Division, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
| | - Aiping He
- Department of Endocrinology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
| |
Collapse
|
5
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: https://doi.org/10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
6
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
7
|
Yang G, Shi J. miRNA-130a-3p targets sphingosine-1-phosphate receptor 1 to activate the microglial and astrocytes and to promote neural injury under the high glucose condition. Open Med (Wars) 2022; 17:2117-2129. [PMID: 36582210 PMCID: PMC9768207 DOI: 10.1515/med-2022-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
As a common complication of diabetes, diabetic pain neuropathy (DPN) is caused by neuron intrinsic and extrinsic factors. Neuron intrinsic factors include neuronal apoptosis and oxidative stress, while extrinsic factors are associated with glial activation. The present study was performed to reveal the functions of miR-130a-3p in apoptosis and oxidative stress of the high glucose (HG)-stimulated primary neurons as well as in the activation of microglial and astrocytes. Primary neurons, microglial, and astrocytes were isolated from newborn mice. Apoptosis was assessed by flow cytometry analysis and western blotting. Reactive oxygen species and glutathione levels were assessed to determine the oxidative stress. Markers of glial cells were detected by immunofluorescence staining. The results revealed that miR-130a-3p deficiency alleviated apoptosis and oxidative stress of HG-stimulated neurons as well as suppressed microglial and astrocyte activation. Moreover, sphingosine-1-phosphate receptor 1 (S1PR1) was found as a target downstream of miR-130a-3p. S1PR1 knockdown partially rescued the inhibitory effects of silenced miR-130a-3p on neuronal injury and glial activation. In conclusion, miR-130a-3p targets S1PR1 to activate the microglial and astrocytes and to promote apoptosis and oxidative stress of the HG-stimulated primary neurons. These findings may provide a novel insight into DPN treatment.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pain, Funing County People’s Hospital, Funing County, Yancheng City, Jiangsu Province, 224400, China
| | - Jinxin Shi
- Department of Pain, Funing County People’s Hospital, No 111 Fucheng Street, Funing County, Yancheng City, Jiangsu Province, 224400, China
| |
Collapse
|
8
|
Abate M, Luce A, Cossu AM, Scrima M, Misso G, Caraglia M, Zappavigna S. Molecular markers as a new tool for diagnostic and prognostic definition of type 2 diabetes mellitus. Minerva Med 2022; 113:910-912. [PMID: 36695408 DOI: 10.23736/s0026-4806.22.08315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marianna Abate
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy -
| | - Amalia Luce
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy
| | - Alessia M Cossu
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy.,Laboratory of Precision and Molecular Oncology, Biogem Scarl, Ariano Irpino, Avellino, Italy
| | - Marianna Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Ariano Irpino, Avellino, Italy
| | - Gabriella Misso
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy.,Laboratory of Precision and Molecular Oncology, Biogem Scarl, Ariano Irpino, Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, L. Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
9
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Ghoreishi E, Shahrokhi SZ, Kazerouni F, Rahimipour A. Circulating miR-148b-3p and miR-27a-3p can be potential biomarkers for diagnosis of pre-diabetes and type 2 diabetes: integrating experimental and in-silico approaches. BMC Endocr Disord 2022; 22:207. [PMID: 35978298 PMCID: PMC9386953 DOI: 10.1186/s12902-022-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In view of the growing global prevalence of type 2 diabetes (T2D), detection of prediabetes and type 2 diabetes in the early stages is necessary to reduce the risk of developing diabetes, prevent the progression of the disease, and dysfunction of different organs. Since miRNAs are involved in the initiation and progression of numerous pathogenic processes, including diabetes, in the present study, we aimed to investigate the expression of miR-148b-3p and miR-27a-3p in prediabetic and T2D patients and to evaluate the diagnostic potential of these miRNAs. METHODS We evaluated the expression of miR-148b-3p and miR-27a-3p in the plasma of three groups: 20 prediabetic patients, 20 T2D patients, and 20 healthy controls. The biochemical parameters were determined by the auto-analyzer. The possible target genes of these miRNAs were identified using an in-silico approach. RESULTS Our results showed that, as compared to the healthy controls, there was a significant up regulation and down regulation in the expression of miR-148b-3p and miR-27a-3p in the T2D patients, respectively. The results of receiver operating characteristic curve analysis also suggested that miR-148b-3p acted successfully in discriminating the prediabetic and diabetic patients from the control group. According to in-silico analysis, miRs influence biological pathways involved in T2DM development, such as insulin signaling. CONCLUSIONS The miR148b-3p and miR-27a-3p expression levels were deregulated in diabetes and pre-diabetes. Furthermore, miR-148b-3p showed significant ability in discriminating between diabetic and healthy individuals, suggesting a potential diagnostic use of miR-148b-3p in the detection of T2D.
Collapse
Affiliation(s)
- Elnaz Ghoreishi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Rahimipour
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
12
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
13
|
Kraczkowska W, Stachowiak L, Pławski A, Jagodziński PP. Circulating miRNA as potential biomarkers for diabetes mellitus type 2: should we focus on searching for sex differences? J Appl Genet 2022; 63:293-303. [PMID: 34984663 PMCID: PMC8979931 DOI: 10.1007/s13353-021-00678-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
microRNAs are non-coding molecules, approximately 22 nucleotides in length, that regulate various cellular processes. A growing body of evidence has suggested that their dysregulated expression is involved in the pathogenesis of diverse diseases, including diabetes mellitus type 2 (DM2). Early onset of this chronic and complex metabolic disorder is frequently undiagnosed, leading to the development of severe diabetic complications. Notably, DM2 prevalence is rising globally and an increasing number of articles demonstrate that DM2 susceptibility, development, and progression differ between males and females. Therefore, this paper discusses the role of microRNAs as a source of novel diagnostic biomarkers for DM2 and aims to underline the importance of sex disparity in biomarkers research. Taking into account an urgent need for the development of sex-specific diagnostic strategies in DM2, recent results have shown that circulating miRNAs are promising candidates for sex-biased biomarkers.
Collapse
Affiliation(s)
- Weronika Kraczkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Lucyna Stachowiak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
14
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
15
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
16
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
17
|
Lu YK, Chu X, Wang S, Sun Y, Zhang J, Dong J, Yan YX. Identification of Circulating hsa_circ_0063425 and hsa_circ_0056891 as Novel Biomarkers for Detection of Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e2688-e2699. [PMID: 33608702 DOI: 10.1210/clinem/dgab101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Circular RNAs (circRNAs), which are involved in the development of diseases by regulating gene expression, have become promising novel biomarkers for diseases. OBJECTIVE The aim of the present study was to identify the circulating circRNA biomarkers for early detection of type 2 diabetes (T2D). METHODS The circRNA expression profiles were screened by microarray and compared between 5 new T2D cases and 5 healthy controls. The expression of candidate circRNAs that may be involved in the insulin phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway were validated by RT-qPCR in a second sample with 30 T2D cases and 30 controls. The association between circRNAs and T2D and their clinical significances were further assessed by logistic regression model, correlation analysis, and ROC curve in a large cohort comprising 313 subjects. The microRNA (miRNA) targets of circRNAs were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG), and insulin resistance. The 2-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls, especially when body mass index was integrated. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significant positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. CONCLUSION Downregulated hsa_circ_0063425 and hsa_circ_0056891 might contribute to the pathogenesis of T2D. They are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ya-Ke Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xi Chu
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yue Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| |
Collapse
|
18
|
Abstract
MicroRNAs orchestrate the tight regulation of numerous cellular processes and the deregulation in their activities has been implicated in many diseases, including diabetes and cancer. There is an increasing amount of epidemiological evidence associating diabetes, particularly type 2 diabetes mellitus, to an elevated risk of various cancer types, including breast cancer. However, little is yet known about the underlying molecular mechanisms and even less about the role miRNAs play in driving the tumorigenic potential of the cell signaling underlying diabetes pathogenesis. This article reviews the role of miRNA in bridging the diabetes–breast cancer association by discussing specific miRNAs that are implicated in diabetes and breast cancer and highlighting the overlap between the disease-specific regulatory miRNA networks to identify a 20-miRNA signature that is common to both diseases. Potential therapeutic targeting of these molecular players may help to alleviate the socioeconomic burden on public health that is imposed by the type 2 diabetes mellitus (T2DM)–breast cancer association.
Collapse
|
19
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|