1
|
Nardi L, Metelli G, Garegnani M, Villani ME, Massa S, Bennici E, Lamanna R, Catellani M, Bisti S, Maggi MA, Demurtas OC, Benvenuto E, Desiderio A. Farming for Pharming: Novel Hydroponic Process in Contained Environment for Efficient Pharma-Grade Production of Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248972. [PMID: 36558107 PMCID: PMC9784412 DOI: 10.3390/molecules27248972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Soilless cultivation of saffron (Crocus sativus) in a controlled environment represents an interesting alternative to field cultivation, in order to obtain a standardized high-quality product and to optimize yields. In particular, pharma-grade saffron is fundamental for therapeutic applications of this spice, whose efficacy has been demonstrated in the treatment of macular diseases, such as Age-related Macular Degeneration (AMD). In this work, a hydroponic cultivation system was developed, specifically designed to meet the needs of C. sativus plant. Various cultivation recipes, different in spectrum and intensity of lighting, temperature, photoperiod and irrigation, have been adopted to study their effect on saffron production. The experimentation involved the cultivation of corms from two subsequent farm years, to identify and validate the optimal conditions, both in terms of quantitative yield and as accumulation of bioactive metabolites, with particular reference to crocins and picrocrocin, which define the 'pharma-grade' quality of saffron. Through HPLC analysis and chromatography it was possible to identify the cultivation parameters suitable for the production of saffron with neuroprotective properties, evaluated by comparison with an ISO standard and the REPRON® procedure. Furthermore, the biochemical characterization was completed through NMR and high-resolution mass spectrometry analyses of saffron extracts. The whole experimental framework allowed to establish an optimized protocol to produce pharma-grade saffron, allowing up to 3.2 g/m2 harvest (i.e., more than three times higher than field production in optimal conditions), which meets the standards of composition for the therapy of AMD.
Collapse
Affiliation(s)
- Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Giulio Metelli
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Marco Garegnani
- DAER—Department of Aerospace Science and Technology, Politecnico of Milano, 20100 Milan, MI, Italy
| | - Maria Elena Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Silvia Massa
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Elisabetta Bennici
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Raffaele Lamanna
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Trisaia Research Center, 75026 Rotondella, MT, Italy
| | - Marcello Catellani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Trisaia Research Center, 75026 Rotondella, MT, Italy
| | - Silvia Bisti
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D’Oro 305, 00136 Rome, RM, Italy
| | - Maria Anna Maggi
- Hortus Novus Srl, Via Campo Sportivo 2, 67050 Canistro, AQ, Italy
| | - Olivia C. Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Eugenio Benvenuto
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Biotechnology and Agro-Industry Division, Casaccia Research Center, 00123 Rome, RM, Italy
- Correspondence: ; Tel.: +39-06-3048-4176
| |
Collapse
|
2
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Controlling Agronomic Variables of Saffron Crop Using IoT for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saffron, also known as “the golden spice”, is one of the most expensive crops in the world. The expensiveness of saffron comes from its rarity, the tedious harvesting process, and its nutritional and medicinal value. Different countries of the world are making great economic growth due to saffron export. In India, it is cultivated mostly in regions of Kashmir owing to its climate and soil composition. The economic value generated by saffron export can be increased manyfold by studying the agronomical factors of saffron and developing a model for artificial cultivation of saffron in any season and anywhere by monitoring and controlling the conditions of its growth. This paper presents a detailed study of all the agronomical variables of saffron that have a direct or indirect impact on its growth. It was found that, out of all the agronomical variables, the important ones having an impact on growth include corm size, temperature, water availability, and minerals. It was also observed that the use of IoT for the sustainable cultivation of saffron in smart cities has been discussed only by very few research papers. An IoT-based framework has also been proposed, which can be used for controlling and monitoring all the important growth parameters of saffron for its cultivation.
Collapse
|
4
|
Smart-Hydroponic-Based Framework for Saffron Cultivation: A Precision Smart Agriculture Perspective. SUSTAINABILITY 2022. [DOI: 10.3390/su14031120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Saffron, one of the most expensive crops on earth, having a vast domain of applications, has the potential to boost the economy of India. The cultivation of saffron has been immensely affected in the past few years due to the changing climate. Despite the use of different artificial methods for cultivation, hydroponic approaches using the IoT prove to give the best results. The presented study consists of potential artificial approaches used for cultivation and the selection of hydroponics as the best approach out of these based on different parameters. This paper also provides a comparative analysis of six present hydroponic approaches. The research work on different factors of saffron, such as the parameters responsible for growth, reasons for the decline in growth, and different agronomical variables, has been shown graphically. A smart hydroponic system for saffron cultivation has been proposed using the NFT (nutrient film technique) and renewable sources of energy.
Collapse
|
5
|
Ferrini F, Fraternale D, Donati Zeppa S, Verardo G, Gorassini A, Carrabs V, Albertini MC, Sestili P. Yield, Characterization, and Possible Exploitation of Cannabis Sativa L. Roots Grown under Aeroponics Cultivation. Molecules 2021; 26:molecules26164889. [PMID: 34443479 PMCID: PMC8401984 DOI: 10.3390/molecules26164889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cannabis sativa L. has been used for a long time to obtain food, fiber, and as a medicinal and psychoactive plant. Today, the nutraceutical potential of C.sativa is being increasingly reappraised; however, C. sativa roots remain poorly studied, despite citations in the scientific literature. In this direction, we identified and quantified the presence of valuable bioactives (namely, β-sitosterol, stigmasterol, campesterol, friedelin, and epi-friedelanol) in the root extracts of C. sativa, a finding which might pave the way to the exploitation of the therapeutic potential of all parts of the C. sativa plant. To facilitate root harvesting and processing, aeroponic (AP) and aeroponic-elicited cultures (AEP) were established and compared to soil-cultivated plants (SP). Interestingly, considerably increased plant growth-particularly of the roots-and a significant increase (up to 20-fold in the case of β-sitosterol) in the total content of the aforementioned roots' bioactive molecules were observed in AP and AEP. In conclusion, aeroponics, an easy, standardized, contaminant-free cultivation technique, facilitates the harvesting/processing of roots along with a greater production of their secondary bioactive metabolites, which could be utilized in the formulation of health-promoting and health-care products.
Collapse
Affiliation(s)
- Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
- Correspondence:
| | - Giancarlo Verardo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, 33100 Udine, Italy;
| | - Vittoria Carrabs
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (F.F.); (D.F.); (V.C.); (M.C.A.); (P.S.)
| |
Collapse
|
6
|
Moradi S, Kafi M, Aliniaeifard S, Salami SA, Shokrpour M, Pedersen C, Moosavi-Nezhad M, Wróbel J, Kalaji HM. Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron ( Crocus sativus L.). Cells 2021; 10:cells10081994. [PMID: 34440766 PMCID: PMC8392054 DOI: 10.3390/cells10081994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Saffron is a valuable plant and one of the most expensive spices worldwide. Nowadays, there is a tendency to produce this crop in indoor plant production systems. However, the production of saffron is restricted by the need for the reproduction of high-quality corms. In this study, we investigated the effect of different ratios of red (R) and blue (B) light spectra (including 100% B (monochromatic B), 75%, 50%, 40%, 25% B, and 0% B (monochromatic R) on the photosynthetic performance and biomass partitioning as well as morphological and biochemical characteristics of saffron. The growth of flower, root, and corm was improved by increasing the proportion of B to R light. B-grown plants were characterized by the highest photosynthetic functionality with efficient electron transport and lower energy dissipation when compared to R-grown plants. B light directed biomass toward the corms and floral organs, while R light directed it toward the leaves. In saffron, the weight of a daughter corm is of great importance since it determines the yield of the next year. As the ratio of B to R light increased, the daughter corms also became heavier, at the cost of reducing their number, though increasing the proportion of B-enhanced antioxidant capacity as well as the activity of ascorbate peroxidase and catalase while superoxide dismutase activity was enhanced in R-grown plants. In conclusion, B light increased the production of high-quality daughter corms and altered biomass partitioning towards harvestable organs (corms and flowers) in saffron plants.
Collapse
Affiliation(s)
- Shirin Moradi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Mohsen Kafi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Correspondence: (M.K.); (S.A.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
- Correspondence: (M.K.); (S.A.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Majid Shokrpour
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Carsten Pedersen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark;
| | - Moein Moosavi-Nezhad
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434 Szczecin, Poland;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, University of Life Sciences SGGW, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| |
Collapse
|
7
|
Eldridge BM, Manzoni LR, Graham CA, Rodgers B, Farmer JR, Dodd AN. Getting to the roots of aeroponic indoor farming. THE NEW PHYTOLOGIST 2020; 228:1183-1192. [PMID: 32578876 DOI: 10.1111/nph.16780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Vertical farming is a type of indoor agriculture where plants are cultivated in stacked systems. It forms a rapidly growing sector with new emerging technologies. Indoor farms often use soil-free techniques such as hydroponics and aeroponics. Aeroponics involves the application to roots of a nutrient aerosol, which can lead to greater plant productivity than hydroponic cultivation. Aeroponics is thought to resolve a variety of plant physiological constraints that occur within hydroponic systems. We synthesize existing studies of the physiology and development of crops cultivated under aeroponic conditions and identify key knowledge gaps. We identify future research areas to accelerate the sustainable intensification of vertical farming using aeroponic systems.
Collapse
Affiliation(s)
- Bethany M Eldridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Calum A Graham
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
8
|
Growth Responses and Root Characteristics of Lettuce Grown in Aeroponics, Hydroponics, and Substrate Culture. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4040035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aeroponics is a relatively new soilless culture technology which may produce food in space-limited cities or on non-arable land with high water-use efficiency. The shoot and root growth, root characteristics, and mineral content of two lettuce cultivars were measured in aeroponics, and compared with hydroponics and substrate culture. The results showed that aeroponics remarkably improved root growth with a significantly greater root biomass, root/shoot ratio, and greater total root length, root area, and root volume. However, the greater root growth did not lead to greater shoot growth compared with hydroponics, due to the limited availability of nutrients and water. It was concluded that aeroponics systems may be better for high value true root crop production. Further research is necessary to determine the suitable pressure, droplet size, and misting interval in order to improve the continuous availability of nutrients and water in aeroponics, if it is to be used to grow crops such as lettuce for harvesting above-ground parts.
Collapse
|
9
|
García-Rodríguez M, López-Córcoles H, Alonso G. Effect of the hydroponic growing of forcedCrocus sativusL. on the saffron quality. ACTA ACUST UNITED AC 2017. [DOI: 10.17660/actahortic.2017.1184.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Gresta F, Napoli E, Ceravolo G, Santonoceto C, Strano T, Ruberto G. Stigmas yield and volatile compounds of saffron (Crocus sativus) in a late sowing under greenhouse with two nitrogen rates. ACTA ACUST UNITED AC 2017. [DOI: 10.17660/actahortic.2017.1184.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Acar B, Sadikoglu H, Doymaz I. Freeze-Drying Kinetics and Diffusion Modeling of Saffron (C
rocus sativus
L
.). J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bahadir Acar
- Department of Machine Education; Karabük University; Karabük Turkey
| | - Hasan Sadikoglu
- Department of Chemical Engineering; Gebze Institute of Technology; Gebze Kocaeli Turkey
| | - Ibrahim Doymaz
- Department of Chemical Engineering; Yildiz Technical University; 34210 Esenler İstanbul Turkey
| |
Collapse
|
12
|
Kumar R, Singh V, Devi K, Sharma M, Singh M, Ahuja P. State of Art of Saffron (Crocus sativusL.) Agronomy: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2008. [DOI: 10.1080/87559120802458503] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|