1
|
Cooper AC, Tchernykh M, Shmuel A, Mendola JD. Diffusion tensor imaging of optic neuropathies: a narrative review. Quant Imaging Med Surg 2024; 14:1086-1107. [PMID: 38223128 PMCID: PMC10784057 DOI: 10.21037/qims-23-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Background and Objective Diffusion tensor imaging (DTI) has been implemented in a breadth of scientific investigations of optic neuropathies, though it has yet to be fully adopted for diagnosis or prognosis. This is potentially due to a lack of standardization and weak replication of results. The aim of this investigation was to review DTI results from studies specific to three distinct optic neuropathies in order to probe its current clinical utility. Methods We reviewed the DTI literature specific to primary open-angle glaucoma (POAG), optic neuritis (ON), and traumatic optic neuropathy (TON) by systematically searching the PubMed database on March 1st, 2023. Four distinct DTI metrics are considered: fractional anisotropy (FA), along with mean diffusivity (MD, axial diffusivity (AD), and radial diffusivity (RD). Results from within-group, between-group, and correlational studies were thoroughly assessed. Key Content and Findings POAG studies most consistently report a decrease in FA, especially in the optic radiations, followed in prevalence by an increase in RD and then MD, whilst AD yields conflicting results between studies. It is notable that there is not an equal distribution of investigated DTI metrics, with FA utilized the most, followed by MD, RD, and AD. Studies of ON are similar in that the most consistent findings are specific to FA, RD, and MD. These results are specific to the optic nerve and radiation since only one study measured the intermediary regions. More studies are needed to assess the effect that ON has on the tracts of the visual system. Finally, only three studies assessing DTI of TON have been performed to date, displaying low to moderate replicability of results. To improve the level of agreement between studies assessing each optic neuropathy, an increased level of standardization is recommended. Conclusions Both POAG and ON studies have yielded some prevalent DTI findings, both for contrast and correlation-based assessments. Although the clinical need is high for TON, considering the limitations of the current diagnostic tools, too few studies exist to make confident conclusions. Future use of standardized and longitudinal DTI, along with the foreseen methodological and technical improvements, is warranted to effectively study optic neuropathies.
Collapse
Affiliation(s)
- Austin C. Cooper
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Maxim Tchernykh
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Amir Shmuel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Janine D. Mendola
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Sommer F, Brand M, Scheithauer MO, Hoffmann TK, Theodoraki MN, Weber R. [Diagnosis and Treatment in frontobasal fractures]. HNO 2023; 71:35-47. [PMID: 36525033 DOI: 10.1007/s00106-022-01256-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury can result in frontobasal fractures (FBF). The goals of treatment for FBF are to eliminate primary morbidity and/or prevent secondary morbidity. Of particular importance in this regard is the proximity of important sensory organs for hearing, vision, smell, and taste, as well as their supplying nervous structures. Medical history, clinical findings, or CT scan are necessary and should lead to an individual evaluation. Depending on the severity of the fractures, the following disciplines may be involved in the treatment of FBF: neurosurgery, plastic surgery, oral and maxillofacial surgery, and/or otorhinolaryngology. Particularly less invasive endoscopic endonasal therapy is a specialty of otorhinolaryngologic surgeons and has not been widely established in other disciplines. The present work provides an overview of the current state of the art in terms of the following aspects, taking into account the current literature: anatomic principles, classification of fractures, diagnostics (in particular clinical examination, imaging, and laboratory chemistry tests), clinical symptoms, and treatment.
Collapse
Affiliation(s)
- F Sommer
- Universitätsklinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universität Ulm, Frauensteige 12, 89075, Ulm, Deutschland.
| | - M Brand
- Universitätsklinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universität Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - M O Scheithauer
- Universitätsklinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universität Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - T K Hoffmann
- Universitätsklinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universität Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - M-N Theodoraki
- Universitätsklinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universität Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - R Weber
- Hals-Nasen-Ohrenklinik des Städtischen Klinikums Karlsruhe, Karlsruhe, Deutschland
| |
Collapse
|
3
|
miR-181d-5p Protects against Retinal Ganglion Cell Death after Blunt Ocular Injury by Regulating NFIA-Medicated Astrocyte Development. Mediators Inflamm 2022; 2022:5400592. [PMID: 36254157 PMCID: PMC9569213 DOI: 10.1155/2022/5400592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic optic neuropathy (TON) refers to damage to the optic nerve resulting from direct and indirect trauma to the head and face. One of the important pathological processes in TON is the death of retinal ganglion cells (RGCs), but the cause of RGCs death remains unclear. We aimed to explore the mechanisms of RGCs death in an experimental TON model. Methods Optic nerve crush injury was induced in ten New Zealand white rabbits. On the 1st, 3rd, 7th, 14th, and 28th days after the operation, the retinal tissues of the rabbits were observed pathologically by hematoxylin-eosin staining. The expression of POU-homeodomain transcription factor Brn3a and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence to evaluate the number of RGCs and astrocytes, respectively. miRNA expression and protein levels were assessed by RT-qPCR and western blot methods, respectively. Finally, the malondialdehyde content, superoxide dismutase activity, and proinflammatory factor levels were measured by ELISA. Western blot and dual-luciferase reporter assays were used to elucidate the relationship between miR-181d-5p and nuclear factor I-A (NFIA). Results Blunt ocular trauma increased oxidative stress and apoptosis and reduced ganglion cell layer (GCL) density. The expression of miR-181d-5p was decreased in retinal tissues, and its overexpression relieved RGCs death, astrocyte development, oxidative stress, and inflammation of the retina, which were reversed by NFIA overexpression. Conclusion miR-181d-5p can protect against the deterioration of TON by inhibiting RGCs death, astrocyte development, oxidative stress, and inflammation by targeting NFIA. This study provides new insight into early medical intervention in patients with TON.
Collapse
|
4
|
Sun W, Chao G, Shang M, Wu Q, Xia Y, Wei Q, Zhou J, Liao L. Optic nerve injury models under varying forces. Int Ophthalmol 2022; 43:757-769. [PMID: 36038691 PMCID: PMC10042766 DOI: 10.1007/s10792-022-02476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the pathological changes in optic nerve injury models under varying forces. METHODS The rats were classified into 4 groups: sham operation (SH), 0.1, 0.3, and 0.5 N. Modeling was performed using the lateral optic nerve pulling method. Seven days after modeling, Brn3a immunofluorescence was used to detect retinal ganglion cell (RGC) number, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect RGC apoptosis, and flash visual evoked potential (FVEP) was used to detect the optic nerve function on days 1, 3, and 7 after modeling. In addition, LC3 II and P62 expression levels in retinal tissues were detected by western blotting to observe the changes in autophagy levels. RESULTS RGC number decreased 7 d after modeling, and it showed a downward trend with increasing damaging force. The number of apoptotic RGCs in ganglion cell layer in the 0.3 and 0.5 N groups was increased and was higher than that in the 0.1 N group. The difference in FVEP of rats in each group was mainly reflected in the P2 peak latency. LC3 II and P62 expression levels in retinal tissue of 0.3 and 0.5 N groups were higher than those of the SH and 0.1 groups; however, the difference between the 0.1 N and SH groups was not statistically significant. CONCLUSION Precisely controlling the force of the optic nerve clamping injury model is necessary because different forces acting on the optic nerve will lead to differences in the loss of optic neurons, the conduction function of the optic nerve, and autophagy level in retinal tissues.
Collapse
Affiliation(s)
- Wu Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Guojun Chao
- Eye Hospital Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengqiu Shang
- Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Wu
- Beijing Tongren Hospital, Beijing, China
| | - Yanting Xia
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qiping Wei
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jian Zhou
- Beijing University of Chinese Medicine, Beijing, China.
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China.
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
- , No. 6, District 1, Fangxing Garden, Fangzhuang, Fengtai District, Beijing, 100078, China.
| | - Liang Liao
- Beijing University of Chinese Medicine, Beijing, China.
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China.
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
- , No. 6, District 1, Fangxing Garden, Fangzhuang, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
5
|
Ma H, Gao Y, Li JM, Bao YK, Nie C, Yin P, Lyu X, Ding XY, Lu R. Analysis of retinal vasculature changes in indirect traumatic optic neuropathy using optic coherence tomography angiography. Int J Ophthalmol 2022; 15:1344-1351. [PMID: 36017033 DOI: 10.18240/ijo.2022.08.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To assess the retinal vasculature alterations in indirect traumatic optic neuropathy (ITON) patients following craniofacial trauma by optic coherence tomography angiography (OCTA). METHODS Patients diagnosed of monocular ITON were recruited from August 2016 to May 2020. OCTA was performed using the AngioVue OCT-A system for two cube scans centered at the optic nerve head and fovea. OCTA data included thicknesses of peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC), as well as proportion of capillary perfusion and data were analyzed for correlation with post-injury timepoints: within 7, 8-30, 31-90, and 91-365d. RESULTS A total of 73 ITON patients were studied. Significant thinning of RNFL and GCC layers and attenuation of microvascular perfusion were observed in ITON eyes as compared to contralateral unaffected eyes (for most of the analyzed sectors and quadrants, P<0.05). Without respect to surgical intervention and vision recovery, the decrease in retinal layer thicknesses and microvascular perfusion was time-dependent, and most significant within three months (P<0.001). CONCLUSION ITON presents with time-dependent thinning of retinal layers and attenuation of microvasculature, indicating possible degeneration of retinal ganglion cells due to reduced retinal blood supply.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jin-Miao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yue-Kun Bao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Cong Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Pan Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xi Lyu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Yan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
6
|
Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, Gomes RSM. Traumatic brain injury and sight loss in military and veteran populations- a review. Mil Med Res 2021; 8:42. [PMID: 34315537 PMCID: PMC8317328 DOI: 10.1186/s40779-021-00334-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
War and combat exposure pose great risks to the vision system. More recently, vision related deficiencies and impairments have become common with the increased use of powerful explosive devices and the subsequent rise in incidence of traumatic brain injury (TBI). Studies have looked at the effects of injury severity, aetiology of injury and the stage at which visual problems become apparent. There was little discrepancy found between the frequencies or types of visual dysfunctions across blast and non-blast related groups, however complete sight loss appeared to occur only in those who had a blast-related injury. Generally, the more severe the injury, the greater the likelihood of specific visual disturbances occurring, and a study found total sight loss to only occur in cases with greater severity. Diagnosis of mild TBI (mTBI) is challenging. Being able to identify a potential TBI via visual symptoms may offer a new avenue for diagnosis.
Collapse
Affiliation(s)
- Syeda F. Hussain
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Zara Raza
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Andrew T. G. Cash
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Thomas Zampieri
- Blinded Veterans Association, 1101 King Street, Suite 300, Alexandria, Virginia 22314 USA
| | - Robert A. Mazzoli
- Department of Ophthalmology, Madigan Army Medical Center, 9040 Jackson Avenue, Tacoma, Washington, 98431 USA
| | - Randy H. Kardon
- Iowa City VA Health Care System and Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa 52246 USA
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa 52242 USA
| | - Renata S. M. Gomes
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
- Northern Hub for Veterans and Military Families Research, Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE7 7XA UK
| |
Collapse
|
7
|
Ross AG, McDougald DS, Khan RS, Duong TT, Dine KE, Aravand P, Bennett J, Chavali VRM, Shindler KS. Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1. Gene Ther 2021; 28:256-264. [PMID: 33589779 PMCID: PMC8149296 DOI: 10.1038/s41434-021-00219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Ahmara G Ross
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA.
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reas S Khan
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thu T Duong
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Dine
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Puya Aravand
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth S Shindler
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Astragalus membranaceus Injection Protects Retinal Ganglion Cells by Regulating the Nerve Growth Factor Signaling Pathway in Experimental Rat Traumatic Optic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:2429843. [PMID: 33381196 PMCID: PMC7762646 DOI: 10.1155/2020/2429843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Activation of the nerve growth factor (NGF) signaling pathway is a potential method of treatment for retinal ganglion cell (RGC) loss due to traumatic optic neuropathy (TON). The present study aimed to explore the biological effects of injecting Astragalus membranaceus (A. mem) on RGCs in an experimental TON model. Adult male Wistar rats were randomly divided into three groups: sham-operated (SL), model (ML), and A. mem injection (AL). The left eyes of the rats were considered the experimental eyes, and the right eyes served as the controls. AL rats received daily intraperitoneal injections of A. mem (3 mL/kg), whereas ML and SL rats were administered the same volume of normal saline. The TON rat model was induced by optic nerve (ON) transverse quantitative traction. After two-week administration, the number of RGCs was determined using retrograde labeling with Fluoro-Gold. The protein levels of NGF, tyrosine kinase receptor A (TrkA), c-Jun N-terminal protein kinase (JNK), JNK phosphorylation (p-JNK), and nuclear factor kappa-B (NF-κB) were assessed using western blotting. The levels of p75 neurotrophin receptor (p75NTR) and NF-κB DNA binding were examined using real-time PCR and an electrophoretic mobility shift assay. In addition, the concentrations of JNK and p-JNK were assessed using an enzyme-linked immunosorbent assay. Results. The number of RGCs in ML was found to be significantly decreased (P < 0.01) relative to both AL and SL, together with the downregulation of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01); upregulation of p75NTR mRNA (P < 0.01); and increased protein levels of JNK (P < 0.05) and p-JNK (P < 0.05). Treatment using A. mem injection significantly preserved the density of RGCs in rats with experimental TON and markedly upregulated the proteins of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01) and downregulated the mRNA level of p75NTR(P < 0.01), as well as the proteins of JNK (P < 0.05) and p-JNK (P < 0.01). Thus, A. mem injection could reduce RGC death in TON induced by ON transverse quantitative traction by stimulating the NGF signaling pathway.
Collapse
|
9
|
Li J, Bai X, Guan X, Yuan H, Xu X. Treatment of Optic Canal Decompression Combined with Umbilical Cord Mesenchymal Stem (Stromal) Cells for Indirect Traumatic Optic Neuropathy: A Phase 1 Clinical Trial. Ophthalmic Res 2020; 64:398-404. [PMID: 33091914 DOI: 10.1159/000512469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE This study was aimed to investigate the safety and feasibility of umbilical cord-derived mesenchymal stem cell (MSC) transplantation in patients with traumatic optic neuropathy (TON). METHODS This is a single-center, prospective, open-labeled phase 1 study that enrolled 20 patients with TON. Patients consecutively underwent either optic canal decompression combined with MSC local implantation treatment (group 1) or only optic canal decompression (group 2). Patients were evaluated on the first day, seventh day, first month, third month, and sixth month postoperatively. Adverse events, such as fever, urticarial lesions, nasal infection, and death, were recorded at each visit. The primary outcome was changes in best-corrected visual acuity. The secondary outcomes were changes in color vision, relative afferent pupillary defect, and flash visual evoked potential. RESULTS All 20 patients completed the 6-month follow-up. None of them had any systemic or ocular complications. The change in best-corrected visual acuity at follow-up was not significantly different between group 1 and group 2 (p > 0.05); however, group 1 showed better visual outcome than group 2. Both groups showed significant improvements in vision compared with the baseline (p < 0.05); however, there were no statistically significant differences between the groups (p > 0.05). In addition, no adverse events related to local transplantation were observed in the patients. CONCLUSIONS A single, local MSC transplantation in the optic nerve is safe for patients with TON.
Collapse
Affiliation(s)
- Jia Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China,
| |
Collapse
|
10
|
Abstract
Clinical evaluation of patients with trauma is challenging, especially in the presence of neurologic injuries. Vision loss after trauma is a harmful and usually overlooked consequence that may be avoided with a prompt and accurate intervention. Head CT is commonly performed in patients with trauma. However, radiologists may be unfamiliar with the CT findings associated with injuries that may affect eyesight. Understanding the visual pathway anatomy and its critical landmarks is paramount for recognizing these findings. This article describes the use of head CT to evaluate the visual pathway to help avoid vision loss in patients with trauma. Injuries are presented in terms of those affecting the globe (rupture, hemorrhage, and lens trauma), optic nerve (direct and indirect traumatic optic neuropathy), orbit (orbital compression syndrome), and vasculature (traumatic carotid-cavernous sinus fistula and posterior cerebral artery injury or ischemia). Techniques for measuring the globe on CT to assess for injury are illustrated. Indications for screening CTA of the head and neck in patients with suspicion for blunt traumatic vascular injury are summarized. Emphasis is placed on the CT findings that warrant an emergency intervention to prevent traumatic visual impairment.
Collapse
|
11
|
Kim E. Clip Compression Injury of the Oculomotor Nerve: Its Prevention and Recovery. Korean J Neurotrauma 2020; 16:85-89. [PMID: 32395456 PMCID: PMC7192810 DOI: 10.13004/kjnt.2020.16.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 11/15/2022] Open
Abstract
Clip compression injury of oculomotor nerve (ON) is a preventable complication of aneurysm microsurgery. The author illustrates this condition in which ON was inadvertently occluded by the clip during repairing posterior communicating artery (PcoA) aneurysm. The report indicates that the surgeon should be meticulous in identifying and protecting ON at clipping stage when PcoA aneurysm prematurely bursts.
Collapse
Affiliation(s)
- El Kim
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
12
|
Zhang M, Chen L, Xu F, Jiang L, Yan W, Kunwar B, Tang F, Yang K, Shen C, Huang H, Lv J, Qin C, Wu X, Zeng S, Li M, Zhong S, Chen Q. Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush. Curr Mol Med 2019; 20:51-59. [PMID: 31533600 DOI: 10.2174/1566524019666190918160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Purpose:
Retinal ganglion cells (RGCs) apoptosis is a common characteristic
of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known
regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into
three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the
physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC)
model.
Methods:
All animals were evenly randomized into four groups: sham-control group,
con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA).
Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by
Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated
with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced
RGCs apoptosis using TUNEL staining.
Results:
The level of full-length PIDD was weakly present and showed no significant
differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in
the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly
increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of
PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented
RGCs apoptosis by inhibiting caspase-2 and tBid activation.
Conclusions:
Taken together, PIDD may play a crucial role in RGCs apoptosis after
ONC, and this process may be relevant to caspase-2 and tBid.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bibhav Kunwar
- Guangzhou Medical University, Guangzhou 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Ke Yang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chen Qin
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shan Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
13
|
Lapeyre G, Randon M. À propos d’un cas rare de neuropathie optique traumatique indirecte cécitante. J Fr Ophtalmol 2019; 42:e317-e318. [DOI: 10.1016/j.jfo.2018.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022]
|
14
|
Childs C, Barker LA, Gage AM, Loosemore M. Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography. Eye Brain 2018; 10:101-110. [PMID: 30588143 PMCID: PMC6299469 DOI: 10.2147/eb.s183042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Changes to retina have been reported after a number of neurodegenerative conditions. The purpose of this study was to investigate retinal structures in Olympic boxers exposed to frequent head blows. Methods Retinal imaging offers potential as a non-invasive biomarker of neuropathology. Macula and retinal nerve fiber layer (RNFL) thickness was measured using optical coherence tomography (OCT) in UK Olympic boxers attending two mandatory eye screening programs, 18 months apart. Data from the two eye screenings provide longitudinal data of retinal change over time. Sedentary healthy subjects (controls) without past or present history of concussion were also screened at the time of the second boxer screening to provide comparison of cross-sectional data. Results Sixteen Olympic boxers aged 20–33 years and 20 sedentary healthy controls, aged 24–45 years, were recruited. Significant macula thickening was observed over time (18 months) in 75% of right and 50% of left eye sectors. For RNFL, left eye quadrants thickened. For right eye RNFL quadrants, thickening and thinning of this layer were observed. Cross-sectional results showed thinner macula sectors and RNFL quadrants in Olympic boxers compared to controls. Conclusion Significant change to macula and RNFL densities, occurring over an 18 month interval is an unexpected finding in otherwise heathy elite sportsmen. In addition, macula and RNFL were thinner than healthy sedentary controls. OCT may prove clinically useful as a candidate retinal biomarker of neuropathological change after mild traumatic brain injury and/or repeat head blows.
Collapse
Affiliation(s)
- Charmaine Childs
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, South Yorkshire, UK,
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University, Sheffield, South Yorkshire, UK
| | - Alex Md Gage
- Alex Gage Family Optometrist, Sheffield, South Yorkshire, UK
| | - Mike Loosemore
- Institute of Sport, Exercise and Health (ISEH), London, UK
| |
Collapse
|