1
|
Zhao X, Huang H, Jiang X, Zheng S, Qiu C, Cheng Y, Lin Y, Wang Y, Yan Y, Di X, Hu M, Zhu W, Wu F, Shi X, Chen R, Kou L. Supramolecular nanoparticle loaded with bilirubin enhances cartilage protection and alleviates osteoarthritis via modulating oxidative stress and inflammatory responses. Colloids Surf B Biointerfaces 2024; 245:114243. [PMID: 39288548 DOI: 10.1016/j.colsurfb.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammation that gradually leads to cartilage degradation. Prolonged chondrocyte oxidative stress contributes to the development of diseases, including chondrocyte apoptosis, cartilage matrix degradation, and aggravation of articular cartilage damage. Bilirubin (BR) possesses strong antioxidant properties by scavenging reactive oxygen species (ROS) and potent protection effects against inflammation. However, its insolubility and short half-life limit its clinical use. Therefore, we developed a supramolecular system of ε-polylysine (EPL) conjugated by β-cyclodextrin (β-CD) on the side chain, and bilirubin was loaded via host-guest interactions, which resulted in the self-assemble of this system into bilirubin-loaded polylysine-β-cyclodextrin nanoparticle (PB) with improving solubility while reducing toxicity and prolonging medication action time. To explore PB's potential pharmacological mechanisms on OA, we established in vitro and in vivo OA models. PB exerted ROS-scavenging proficiency and anti-apoptotic effects on rat chondrocytes by activating the Nrf2-HO-1/GPX4 signaling pathway. Additionally, PB reprogrammed the cartilage microenvironment by regulating the NF-κB signaling pathway to maintain chondrocyte function. Animal experiments further confirmed that PB had excellent scavenging ability for ROS and inflammatory factors related to charge adsorption with cartilage as well as long retention ability. Together, this work suggests that PB has superior protective abilities with beneficial effects on OA, indicating its great potential for intervention therapy targeting chondrocytes.
Collapse
Affiliation(s)
- Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yunzhi Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Di
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Miyun Hu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
2
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
3
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
4
|
Jonidi Shariatzadeh F, Solouk A, Mirzadeh H, Bonakdar S, Sadeghi D, Khoulenjani SB. Cellulose nanocrystals-reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35346. [PMID: 38359175 DOI: 10.1002/jbm.b.35346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 02/17/2024]
Abstract
Improvement of mechanical properties of injectable tissue engineering scaffolds is a current challenge. The objective of the current study is to produce a highly porous injectable scaffold with improved mechanical properties. For this aim, cellulose nanocrystals-reinforced dual crosslinked porous nanocomposite cryogels were prepared using chemically crosslinked methacrylated gelatin (GelMA) and ionically crosslinked hyaluronic acid (HA) through the cryogelation process. The resulting nanocomposites showed highly porous structures with interconnected porosity (>90%) and mean pore size in the range of 130-296 μm. The prepared nanocomposite containing 3%w/v of GelMA, 20 w/w% of HA, and 1%w/v of CNC showed the highest Young's modulus (10 kPa) and excellent reversibility after 90% compression and could regain its initial shape after injection by a 16-gauge needle in the aqueous media. The in vitro results demonstrated acceptable viability (>90%) and migration of the human chondrocyte cell line (C28/I2), and chondrogenic differentiation of human adipose stem cells. A two-month in vivo assay on a rabbit's ear model confirmed that the regeneration potential of the prepared cryogel is comparable to the natural autologous cartilage graft, suggesting it is a promising alternative for autografts in the treatment of cartilage defects.
Collapse
Affiliation(s)
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Davoud Sadeghi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadab Bagheri Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
5
|
Bačenková D, Trebuňová M, Demeterová J, Živčák J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int J Mol Sci 2023; 24:17096. [PMID: 38069417 PMCID: PMC10707713 DOI: 10.3390/ijms242317096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Hyaline cartilage, which is characterized by the absence of vascularization and innervation, has minimal self-repair potential in case of damage and defect formation in the chondral layer. Chondrocytes are specialized cells that ensure the synthesis of extracellular matrix components, namely type II collagen and aggregen. On their surface, they express integrins CD44, α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5, which are also collagen-binding components of the extracellular matrix. This article aims to contribute to solving the problem of the possible repair of chondral defects through unique methods of tissue engineering, as well as the process of pathological events in articular cartilage. In vitro cell culture models used for hyaline cartilage repair could bring about advanced possibilities. Currently, there are several variants of the combination of natural and synthetic polymers and chondrocytes. In a three-dimensional environment, chondrocytes retain their production capacity. In the case of mesenchymal stromal cells, their favorable ability is to differentiate into a chondrogenic lineage in a three-dimensional culture.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (M.T.); (J.D.); (J.Ž.)
| | | | | | | |
Collapse
|
6
|
Chen CH, Kao HH, Lee YC, Chen JP. Injectable Thermosensitive Hyaluronic Acid Hydrogels for Chondrocyte Delivery in Cartilage Tissue Engineering. Pharmaceuticals (Basel) 2023; 16:1293. [PMID: 37765101 PMCID: PMC10535600 DOI: 10.3390/ph16091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we synthesize a hyaluronic acid-g-poly(N-isopropylacrylamide) (HPN) copolymer by grafting the amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) to hyaluronic acid (HA). The 5% PNIPAM-NH2 and HPN polymer solution is responsive to temperature changes with sol-to-gel phase transition temperatures around 32 °C. Compared with the PNIPAM-NH2 hydrogel, the HPN hydrogel shows higher water content and mechanical strength, as well as lower volume contraction, making it a better choice as a scaffold for chondrocyte delivery. From an in vitro cell culture, we see that cells can proliferate in an HPN hydrogel with full retention of cell viability and show the phenotypic morphology of chondrocytes. In the HPN hydrogel, chondrocytes demonstrate a differentiated phenotype with the upregulated expression of cartilage-specific genes and the enhanced secretion of extracellular matrix components, when compared with the monolayer culture on tissue culture polystyrene. In vivo studies confirm the ectopic cartilage formation when HPN was used as a cell delivery vehicle after implanting chondrocyte/HPN in nude mice subcutaneously, which is shown from a histological and gene expression analysis. Taken together, the HPN thermosensitive hydrogel will be a promising injectable scaffold with which to deliver chondrocytes in cartilage-tissue-engineering applications.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Yen-Chen Lee
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
7
|
Thomas J, Chopra V, Rajput S, Guha R, Chattopadhyay N, Ghosh D. Post-Implantation Stiffening by a Bioinspired, Double-Network, Self-Healing Hydrogel Facilitates Minimally Invasive Cell Delivery for Cartilage Regeneration. Biomacromolecules 2023. [PMID: 37376790 DOI: 10.1021/acs.biomac.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Injectable hydrogels have demonstrated advantages in cartilage repair by enabling the delivery of cells through a minimally invasive approach. However, several injectable hydrogels suffer from rapid degradation and low mechanical strength. Moreover, higher mechanical stiffness in hydrogels can have a detrimental effect on post-implantation cell viability. To address these challenges, we developed an in situ forming bioinspired double network hydrogel (BDNH) that exhibits temperature-dependent stiffening after implantation. The BDNH mimics the microarchitecture of aggrecan, with hyaluronic acid-conjugated poly(N-isopropylacrylamide) providing rigidity and Schiff base crosslinked polymers serving as the ductile counterpart. BDNHs exhibited self-healing property and enhanced stiffness at physiological temperature. Excellent cell viability, long time cell proliferation, and cartilage specific matrix production were observed in the chondrocytes cultured in the BDNH hydrogel. Evidence of cartilage regeneration in a rabbit cartilage defect model using chondrocyte-laden BDNH has suggested it to be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
8
|
Chen Y, Lock J, Liu HH. Nanocomposites for cartilage regeneration. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
9
|
Wu G, Ma F, Liu Z, Liu J, Xue Y, Zhang M, Wen C, Tang B, Lin L. Hybrid composites with magnesium-containing glycosaminoglycans as a chondroconducive matrix for osteoarthritic cartilage repair. Int J Biol Macromol 2022; 220:1104-1113. [PMID: 35981680 DOI: 10.1016/j.ijbiomac.2022.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The alteration of the extracellular matrix (ECM) homeostasis plays an important role in the development of osteoarthritis (OA). The pathological changes of OA are mainly manifested in the large reduction of components in ECM, like type II collagen and aggrecan, especially hyaluronic acid and chondroitin sulfate and often accompanied by inflammation. Rebuilding ECM and inhibiting inflammation may reverse OA progression. In this work, we developed new magnesium-containing glycosaminoglycans (Mg-GAGs), to create a positive ECM condition for promoting cartilage regeneration and alleviating OA. In vitro results suggested that the introduction of Mg-GAGs contributed to promoting chondrocyte proliferation and facilitated upregulating chondrogenic genes and suppressed inflammation-related factors. Moreover, Mg-GAGs exhibited positive effects on suppressing synovial inflammation, reducing chondrocyte apoptosis and preserving the subchondral bone in the ACLT-induced OA rabbit model. This study provides new insight into ECM-based therapeutic strategy and opens a new avenue for the development of novel OA treatment.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yizhebang Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mengdi Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
10
|
Bauer C, Moser LB, Jeyakumar V, Niculescu-Morzsa E, Kern D, Nehrer S. Increased Chondroprotective Effect of Combining Hyaluronic Acid with a Glucocorticoid Compared to Separate Administration on Cytokine-Treated Osteoarthritic Chondrocytes in a 2D Culture. Biomedicines 2022; 10:biomedicines10071733. [PMID: 35885038 PMCID: PMC9313299 DOI: 10.3390/biomedicines10071733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Intra-articular injections of glucocorticoids (GC) or hyaluronic acid (HA) are commonly used interventions for patients suffering from knee osteoarthritis (OA). Both substances are combined to achieve a chondroprotective and anti-inflammatory effect. Clinical studies have shown benefits, but data on the cellular level are still lacking. This study aimed to investigate the effect of the GC triamcinolone hexacetonide, HA, and a mix of both substances on cytokine-treated chondrocytes in vitro. Chondrocytes isolated from human articular cartilage were seeded on 6- and 24-well plates. Mimicking OA’s inflammatory state, cells were treated with IL-1β and IL-17 for six days, whereby, after three days, test substances (10%) were added to the culture medium. Chondrocytes were analyzed on days three and six concerning their actin polymerization, expression of anabolic and catabolic genes, metabolic activity, cytokine release, and reactive oxygen species (ROS). Adding HA or GC/HA to the inflammatory culture medium increased the metabolic activity of chondrocytes, while groups containing GC reduced catabolic gene expression and the release of TNF-α. In addition, enhanced F-actin content was shown supplementing HA or GC/HA to the culture medium. Supplementing GC with HA leads to an anti-inflammatory and chondroprotective effect by diminishing the side effects of GC supplementation alone.
Collapse
Affiliation(s)
- Christoph Bauer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
- Correspondence: ; Tel.: +43-2622-893-2609
| | - Lukas B. Moser
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
- Department of Orthopedics, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| | - Vivek Jeyakumar
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
| | - Eugenia Niculescu-Morzsa
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
| | - Daniela Kern
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education, 3500 Krems, Austria; (L.B.M.); (V.J.); (E.N.-M.); (D.K.); (S.N.)
- Department of Orthopedics, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| |
Collapse
|
11
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
12
|
Agarwal S, Jayadeep JS. Adult Pathology: Knee. CURRENT ORTHOPAEDIC PRACTICE 2022. [DOI: 10.1007/978-3-030-78529-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Satin AM, Norelli JB, Sgaglione NA, Grande DA. Effect of Combined Leukocyte-Poor Platelet-Rich Plasma and Hyaluronic Acid on Bone Marrow-Derived Mesenchymal Stem Cell and Chondrocyte Metabolism. Cartilage 2021; 13:267S-276S. [PMID: 31282189 PMCID: PMC8804819 DOI: 10.1177/1947603519858739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Given the potential applications of combined biologics, the authors sought to evaluate the in vitro effect of combined platelet-rich plasma (PRP) and hyaluronic acid (HA) on cellular metabolism. DESIGN Bone marrow-derived mesenchymal stem cells (BMSCs) and chondrocytes were obtained from the femurs of Sprague-Dawley rats. An inflammatory model was created by adding 10 ng/mL interleukin-1-beta to culture media. Non-crosslinked high-molecular-weight HA, activated-PRP (aPRP), and unactivated-PRP (uPRP) were tested. Cellular proliferation and gene expression were measured at 1 week. Genes of interest included aggrecan, matrix metalloproteinase (MMP)-9, and MMP-13. RESULTS Combined uPRP-HA was associated with a significant increase in chondrocyte and BMSC proliferation at numerous preparations. There was a trend of increased chondrocyte aggrecan expression with combined PRP-HA. The greatest and only significant decrease in BMSC MMP-9 expression was observed with combined PRP-HA. While a significant reduction of BMSC MMP-13 expression was seen with PRP and HA-alone, a greater reduction was observed with PRP-HA. MMP-9 chondrocyte expression was significantly reduced in cells treated with PRP-HA. PRP-alone and HA-alone at identical concentrations did not result in a significant reduction. The greatest reduction of MMP-13 chondrocyte expression was observed in chondrocytes plus combined PRP-HA. CONCLUSIONS We demonstrated a statistically significant increase in BMSC and chondrocyte proliferation and decreased expression of catabolic enzymes with combined PRP-HA. These results demonstrate the additive in vitro effect of combined PRP-HA to stimulate cellular growth, restore components of the articular extracellular matrix, and reduce inflammation.
Collapse
Affiliation(s)
- Alexander M. Satin
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
| | - Jolanta B. Norelli
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nicholas A. Sgaglione
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
14
|
Smolka W, Ptas M, Panek A, Krok-Borkowicz M, Zambrzycki M, Gubernat M, Markowski J, Fraczek-Szczypta A. Surface Modification of Carbon Nanofibers to Improve Their Biocompatibility in Contact with Osteoblast and Chondrocytes Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6370. [PMID: 34771898 PMCID: PMC8585247 DOI: 10.3390/ma14216370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
The goal of this study is to investigate the influence of different types of modifiers, such as sodium hyaluronate (NaH), graphene oxide (GO), silica oxycarbide (SiOC) and oxidation process (ox) on physicochemical, morphological, and biological properties of electrospun carbon nanofibers (eCNFs). Scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy (FTIR) were used to evaluate the microstructure and chemistry of as-prepared and modified CNFs. The electrical properties of CNFs scaffolds were examined using a four-point probe method to evaluate the influence of modifiers on the volume conductivity and surface resistivity of the obtained samples. The wettability of the surfaces of modified and unmodified CNFs scaffolds was also tested by contact angle measurement. During the in vitro study all samples were put into direct contact with human chondrocyte CHON-001 cells and human osteosarcoma MG-63 cells. Their viability was analysed after 72 h in culture. Moreover, the cell morphology and cell area in contact with CNFs was observed by means of fluorescence microscopy. The obtained results show great potential for the modification of CNFs with polymer, ceramic and carbon modifiers, which do not change the fiber form of the substrate but significantly affect their surface and volume properties. Preliminary biological studies have shown that the type of modification of CNFs affects either the rate of increase in the number of cells or the degree of spreading in relation to the unmodified sample. More hydrophilic and low electrically conductive samples such as CNF_ox and CNF_NaH significantly increase cell proliferation, while other GO and SiOC modified samples have an effect on cell adhesion and thus cell spreading. From the point of view of further research and the possibility of combining the electrical properties of modified CNF scaffolds with electrical stimulation, where these scaffolds would be able to transport electrical signals to cells and thus affect cell adhesion, spreading, and consequently tissue regeneration, samples CNF_GO and CNF_SiOC would be the most desirable.
Collapse
Affiliation(s)
- Wojciech Smolka
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland; (W.S.); (J.M.)
| | - Monika Ptas
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland;
| | - Malgorzata Krok-Borkowicz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Marcel Zambrzycki
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Maciej Gubernat
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Jaroslaw Markowski
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland; (W.S.); (J.M.)
| | - Aneta Fraczek-Szczypta
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| |
Collapse
|
15
|
Hyaluronic Acid as a Carrier Supports the Effects of Glucocorticoids and Diminishes the Cytotoxic Effects of Local Anesthetics in Human Articular Chondrocytes In Vitro. Int J Mol Sci 2021; 22:ijms222111503. [PMID: 34768933 PMCID: PMC8583767 DOI: 10.3390/ijms222111503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The current study aimed to investigate the cytotoxicity of co-administrating local anesthetics (LA) with glucocorticoids (GC) and hyaluronic acid (HA) in vitro. Human articular cartilage was obtained from five patients undergoing total knee arthroplasty. Chondrocytes were isolated, expanded, and seeded in 24-well plates for experimental testing. LA (lidocaine, bupivacaine, ropivacaine) were administered separately and co-administered with the following substances: GC, HA, and GC/HA. Viability was confirmed by microscopic images, flow cytometry, metabolic activity, and live/dead assay. The addition of HA and GC/HA resulted in enhanced attachment and branched appearance of the chondrocytes compared to LA and LA/GC. Metabolic activity was better in all LA co-administered with HA and GC/HA than with GC and only LA. Flow cytometry revealed the lowest cell viability in lidocaine and the highest cell viability in ropivacaine. This finding was also confirmed by live/dead assay. In conclusion, HA supports the effect of GC and reduces chondrotoxic effects of LA in vitro. Thereby, the co-administration of HA to LA and GC offers an alternative less chondrotoxic approach for treating patients with symptomatic osteoarthritis of the knee.
Collapse
|
16
|
Effects of Esterified Hyaluronic Acid, Adipose Tissue, and Blood Glue on Survival of Diced Cartilage Grafts. J Craniofac Surg 2021; 33:1614-1618. [PMID: 34690319 DOI: 10.1097/scs.0000000000008304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Diced cartilage grafts are used for correcting nasal dorsal deformities and irregularities. However, cartilage resorption is among most common problems after rhinoplasty. The purpose of this experimental study was to investigate the effects of esterified hyaluronic acid, adipose tissue, and blood glue on the viability of diced cartilage grafts. METHODS A total of 24 Wistar albino rats were used for the study. Cartilage grafts were obtained from 1 side ear and diced. The rats were divided into 4 groups (6 in each group): bare diced cartilage (group 1), diced cartilage wrapped with adipose tissue (group 2), diced cartilage blended with blood glue (group 3), and diced cartilage wrapped with esterified hyaluronic acid (group 4). The grafts were inserted into the subcutaneous pockets of the back of same rat. After 2 months follow-up specimens were harvested for histopathological and dimensional examination. The sections were stained with Hematoxylin and Eosin, Masson-Trichrome, and Elastic Van-Gieson. Chronic inflammation, loss of chondrocyte nucleus, vascularization, foreign body reaction, collagen content of matrix, and extent of elastic fiber were assessed under light microscopy. RESULTS Foreign body reaction in adipose tissue and blood group was significantly higher than bare cartilage and esterified hyaluronic acid group (P = 0.001). With respect to loss of chondrocyte nucleus esterified hyaluronic acid group had significant higher rate of nucleus loss than other groups (P = 0.002). CONCLUSIONS This study suggests that blood glue, esterified hyaluronic acid and autologous adipose tissue have not beneficial effects in improving viability of diced cartilage grafts.
Collapse
|
17
|
Henson F, Lydon H, Birch M, Brooks R, McCaskie A. Using apheresis-derived cells to augment microdrilling in the treatment of chondral defects in an ovine model. J Orthop Res 2021; 39:1411-1422. [PMID: 33146412 PMCID: PMC7612025 DOI: 10.1002/jor.24889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
The treatment of chondral defects using microdrilling often results in a mechanically weak fibrocartilagenous repair, rather than a more robust hyaline cartilage repair. Many different microfracture/microdrilling augmentation techniques have been described, including the use of cellular products to enhance healing. Autologous peripheral blood progenitor cells can be obtained via apheresis after administration of granulocyte colony-stimulating factor (G-CSF) and have been used successfully to augment microdrilling in clinical patients. The objective of this study was to use apheresis-derived mononuclear blood cells to augment microdrilling treatment of a cartilage defect in an ovine model to determine the effect on healing. Forty adult female sheep were used in this study and were divided into a control group (microdrilling alone) and a treatment group (microdrilling, hyaluronic acid, and apheretic product). Outcome measurements included weight-bearing on the operated limb, macroscopic scoring of the joint, histology, and immunohistochemistry. In addition, magnetic resonance imaging was used to attempt to identify SPION-labeled cells from the apheretic product in the operated limbs. The results showed a significant increase in healing as measured by the modified O'Driscoll sore in the treated group. No evidence of homing of SPION-labeled cells to the defect was found and no correlation was found between the response to G-CSF administration or concentration of CD34+ and outcome. A correlation was found between healing and the concentration of white blood cells and peripheral blood mononuclear cell numbers in the apheretic product.
Collapse
Affiliation(s)
- Frances Henson
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Helen Lydon
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Mark Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Roger Brooks
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrew McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. J Colloid Interface Sci 2021; 603:94-109. [PMID: 34197994 DOI: 10.1016/j.jcis.2021.06.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/22/2023]
Abstract
To achieve optimal functional recovery of articular cartilage, scaffolds with nanofibrous structure and biological function have been widely pursued. In this study, two-dimensional electrospun poly(l-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) scaffolds (2DS) were fabricated by dynamic liquid support (DLS) electrospinning system, and then cross-linked with hyaluronic acid (HA) to further mimic the microarchitecture of native cartilage. Subsequently, three-dimensional PLCL/SF scaffolds (3DS) and HA-crosslinked three-dimensional scaffolds (3DHAS) were successfully fabricated by in situ gas foaming and freeze-drying. 3DHAS exhibited better mechanical properties than that of the 3DS. Moreover, all scaffolds exhibited excellent biocompatibility in vitro. 3DHAS showed better proliferation and phenotypic maintenance of chondrocytes as compared to the other scaffolds. Histological analysis of cell-scaffold constructs explanted 8 weeks after implantation demonstrated that both 3DS and 3DHAS scaffolds formed cartilage-like tissues, and the cartilage lacuna formed in 3DHAS scaffolds was more mature. Moreover, the reparative capacity of scaffolds was discerned after implantation in the full-thickness articular cartilage model in rabbits for up to 12 weeks. The macroscopic and histological results exhibited typical cartilage-like character and well-integrated boundary between 3DHAS scaffolds and the host tissues. Collectively, biomimetic 3DHAS scaffolds may be promising candidates for cartilage tissue regeneration applications.
Collapse
|
19
|
Engineering of Optimized Hydrogel Formulations for Cartilage Repair. Polymers (Basel) 2021; 13:polym13091526. [PMID: 34068542 PMCID: PMC8126049 DOI: 10.3390/polym13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
The ideal scaffold for cartilage regeneration is expected to provide adequate mechanical strength, controlled degradability, adhesion, and integration with the surrounding native tissue. As it does this, it mimics natural ECMs functions, which allow for nutrient diffusion and promote cell survival and differentiation. Injectable hydrogels based on tyramine (TA)-functionalized hyaluronic acid (HA) and dextran (Dex) are a promising approach for cartilage regeneration. The properties of the hydrogels used in this study were adjusted by varying polymer concentrations and ratios. To investigate the changes in properties and their effects on cellular behavior and cartilage matrix formation, different ratios of HA- and dextran-based hybrid hydrogels at both 5 and 10% w/v were prepared using a designed mold to control generation. The results indicated that the incorporation of chondrocytes in the hydrogels decreased their mechanical properties. However, rheological and compression analysis indicated that 5% w/v hydrogels laden with cells exhibit a significant increase in mechanical properties after 21 days when the constructs are cultured in a chondrogenic differentiation medium. Moreover, compared to the 10% w/v hydrogels, the 5% w/v hybrid hydrogels increased the deposition of the cartilage matrix, especially in constructs with a higher Dex-TA content. These results indicated that 5% w/v hybrid hydrogels with 25% HA-TA and 75% Dex-TA have a high potential as injectable scaffolds for cartilage tissue regeneration.
Collapse
|
20
|
Setti T, Arab MGL, Santos GS, Alkass N, Andrade MAP, Lana JFSD. The protective role of glutathione in osteoarthritis. J Clin Orthop Trauma 2021; 15:145-151. [PMID: 33717929 PMCID: PMC7920102 DOI: 10.1016/j.jcot.2020.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is currently understood that osteoarthritis (OA) is a major chronic inflammatory musculoskeletal disease. While this disease has long been attributed to biomechanical trauma, recent evidence establishes a significant correlation between osteoarthritic progression and unbridled oxidative stress, responsible for prolonged inflammation. Research describes this as a disturbance in the balanced production of reactive oxygen species (ROS) and antioxidant defenses, generating macromolecular damage and disrupted redox signaling and control. Since ROS pathways are being considered new targets for OA treatment, the development of antioxidant therapy to counteract exacerbated oxidative stress is being continuously researched and enhanced in order to fortify the cellular defenses. Experiments with glutathione and its precursor molecule, N-acetylcysteine (NAC), have shown interesting results in the literature for the management of OA, where they have demonstrated efficacy in reducing cartilage degradation and inflammation markers as well as significant improvements in pain and functional outcomes. Glutathione remains a safe, effective and overall cheap treatment alternative in comparison to other current therapeutic solutions and, for these reasons, it may prove to be comparably superior under particular circumstances. METHODS Literature was reviewed using PubMed and Google Scholar in order to bring up significant evidence and illustrate the defensive mechanisms of antioxidant compounds against oxidative damage in the onset of musculoskeletal diseases. The investigation included a combination of keywords such as: oxidative stress, oxidative damage, inflammation, osteoarthritis, antioxidant, glutathione, n-acetylcysteine, redox, and cell signaling. CONCLUSION Based on the numerous studies included in this literature review, glutathione and its precursor N-acetylcysteine have demonstrated significant protective effects in events of prolonged, exacerbated oxidative stress as seen in chronic inflammatory musculoskeletal disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Thiago Setti
- Orthopedics – Sports Medicine – Pain Physician, Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Miguel Gustavo Luz Arab
- Orthopedics – Sports Medicine – Pain Physician, Samax - Saude Maxima, 401 Sergipe St – Cj 102, 01243-001, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Natasha Alkass
- Pharmaceutical Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
| | - Marco Antonio Percope Andrade
- Federal University of Minas Gerais, Department of Locomotor Apparatus, 6627 Presidente Antônio Carlos Avenue, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - José Fábio Santos Duarte Lana
- Orthopedics – Sports Medicine – Pain Physician, IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
21
|
Hyaluronic Acid Supplement as a Chondrogenic Adjuvant in Promoting the Therapeutic Efficacy of Stem Cell Therapy in Cartilage Healing. Pharmaceutics 2021; 13:pharmaceutics13030432. [PMID: 33806959 PMCID: PMC8004652 DOI: 10.3390/pharmaceutics13030432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023] Open
Abstract
The main aim of this study is to investigate the therapeutic efficacy of direct intra-articular injection of bone-marrow-derived stem/stromal cells (BMSCs) and the adjuvant role of hyaluronic acid (HA) in facilitating rabbit articular cartilage repair. First, rabbit BMSCs were treated with a medium containing different concentrations of HA. Later, HA’s influence on BMSCs’ CD44 expression, cell viability, extracellular glycosaminoglycan (GAG) synthesis, and chondrogenic gene expression was evaluated during seven-day cultivation. For the in vivo experiment, 24 rabbits were used for animal experiments and 6 rabbits were randomly allocated to each group. Briefly, chondral defects were created at the medial femoral condyle; group 1 was left untreated, group 2 was injected with HA, group 3 was transplanted with 3 × 106 BMSCs, and group 4 was transplanted with 3 × 106 BMSCs suspended in HA. Twelve weeks post-treatment, the repair outcome in each group was assessed and compared both macroscopically and microscopically. Results showed that HA treatment can promote cellular CD44 expression. However, the proliferation rate of BMSCs was downregulated when treated with 1 mg/mL (3.26 ± 0.03, p = 0.0002) and 2 mg/mL (2.61 ± 0.04, p = 0.0001) of HA compared to the control group (3.49 ± 0.05). In contrast, 2 mg/mL (2.86 ± 0.3) of HA treatment successfully promoted normalized GAG expression compared to the control group (1.88 ± 0.06) (p = 0.0009). The type II collagen gene expression of cultured BMSCs was significantly higher in BMSCs treated with 2 mg/mL of HA (p = 0.0077). In the in vivo experiment, chondral defects treated with combined BMSC and HA injection demonstrated better healing outcomes than BMSC or HA treatment alone in terms of gross grading and histological scores. In conclusion, this study helps delineate the role of HA as a chondrogenic adjuvant in augmenting the effectiveness of stem-cell-based injection therapy for in vivo cartilage repair. From a translational perspective, the combination of HA and BMSCs is a convenient, ready-to-use, and effective formulation that can improve the therapeutic efficacy of stem-cell-based therapies.
Collapse
|
22
|
Pandey S, Rai N, Mahtab A, Mittal D, Ahmad FJ, Sandal N, Neupane YR, Verma AK, Talegaonkar S. Hyaluronate-functionalized hydroxyapatite nanoparticles laden with methotrexate and teriflunomide for the treatment of rheumatoid arthritis. Int J Biol Macromol 2021; 171:502-513. [PMID: 33422513 DOI: 10.1016/j.ijbiomac.2020.12.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune inflammatory disorder is currently incurable. Methotrexate and Teriflunomide are routinely prescribed drugs but their uses are limited due to severe hepatotoxicity. Hyaluronic acid (HYA) is a targeting ligand for CD44 receptors overexpressed on inflamed macrophages. The present investigation aimed at design and fabrication of HYA coated hydroxyapatite nanoparticles (HA-NPs) loaded with Methotrexate (MTX) and Teriflunomide (TEF) (HAMT-NPs) to form HYA-HAMT-NPs for the treatment of RA. HYA-HAMT-NPs showed the nanoscale size of 274.9 ± 64 nm along with a zeta potential value of -26.80 ± 6.08 mV. FTIR spectra of HYA and HYA-HAMT-NPs proved the coating of HYA on HYA-HAMT-NPs. HYA-HAMT-NPs showed less cell viability compared to drugs on RAW 264.7 macrophage cells. A biodistribution study by gamma scintigraphy imaging further strengthened the results by revealing significantly higher (p<0.05) percentage radioactivity (76.76%) of HYA-HAMT-NPs in the synovial region. The results obtained by pharmacodynamic studies ensured the better efficacy of HYA-HAMT-NPs in preventing disease progression and promoting articular regeneration. Under hepatotoxicity evaluation, liver histopathology and liver enzyme assay revealed ~29% hepatotoxicity was reduced by HYA-HAMT-NPs when compared to conventional FOLITRAX-10 and AUBAGIO oral treatments. Overall, the results suggest that HYA-HAMT-NP is a promising delivery system to avoid drug-induced hepatotoxicity in RA.
Collapse
Affiliation(s)
- Shweta Pandey
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Nishant Rai
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Asiya Mahtab
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Disha Mittal
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110 007, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Nidhi Sandal
- Department of Nuclear Medicine, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Government of India, Ministry of Defence, Delhi 110054, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore.
| | - Anita Kamra Verma
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110 007, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi 110017, India..
| |
Collapse
|
23
|
Ziadlou R, Rotman S, Teuschl A, Salzer E, Barbero A, Martin I, Alini M, Eglin D, Grad S. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111701. [PMID: 33545860 DOI: 10.1016/j.msec.2020.111701] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022]
Abstract
Injury of articular cartilage leads to an imbalance in tissue homeostasis, and due to the poor self-healing capacity of cartilage the affected tissue often exhibits osteoarthritic changes. In recent years, injectable and highly tunable composite hydrogels for cartilage tissue engineering and drug delivery have been introduced as a desirable alternative to invasive treatments. In this study, we aimed to formulate injectable hydrogels for drug delivery and cartilage tissue engineering by combining different concentrations of hyaluronic acid-tyramine (HA-Tyr) with regenerated silk-fibroin (SF) solutions. Upon enzymatic crosslinking, the gelation and mechanical properties were characterized over time. To evaluate the effect of the hydrogel compositions and properties on extracellular matrix (ECM) deposition, bovine chondrocytes were embedded in enzymatically crosslinked HA-Tyr/SF composites (in further work abbreviated as HA/SF) or HA-Tyr hydrogels. We demonstrated that all hydrogel formulations were cytocompatible and could promote the expression of cartilage matrix proteins allowing chondrocytes to produce ECM, while the most prominent chondrogenic effects were observed in hydrogels with HA20/SF80 polymeric ratios. Unconfined mechanical testing showed that the compressive modulus for HA20/SF80 chondrocyte-laden constructs was increased almost 10-fold over 28 days of culture in chondrogenic medium which confirmed the superior production of ECM in this hydrogel compared to other hydrogels in this study. Furthermore, in hydrogels loaded with anabolic and anti-inflammatory drugs, HA20/SF80 hydrogel showed the longest and the most sustained release profile over time which is desirable for the long treatment duration typically necessary for osteoarthritic joints. In conclusion, HA20/SF80 hydrogel was successfully established as a suitable injectable biomaterial for cartilage tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Reihane Ziadlou
- AO Research Institute Davos, Davos Platz 7270, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Stijn Rotman
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - Andreas Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Elias Salzer
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrea Barbero
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Ivan Martin
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland; Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4001, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - David Eglin
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos Platz 7270, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
24
|
Borrelli C, Buckley CT. Injectable Disc-Derived ECM Hydrogel Functionalised with Chondroitin Sulfate for Intervertebral Disc Regeneration. Acta Biomater 2020; 117:142-155. [PMID: 33035694 DOI: 10.1016/j.actbio.2020.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Low back pain resulting from intervertebral disc (IVD) degeneration is a significant socioeconomic burden. The main effect of the degeneration process involves the alteration of the nucleus pulposus (NP) via cell-mediated enzymatic breakdown of key extracellular matrix (ECM) components. Thus, the development of injectable and biomimetic biomaterials that can instruct the regenerative cell component to produce tissue-specific ECM is pivotal for IVD repair. Chondroitin sulfate (CS) and type II collagen are the primary components of NP tissue and together create the ideal environment for cells to deposit de-novo matrix. Given their high matrix synthesis capacity potential post-expansion, nasal chondrocytes (NC) have been proposed as a potential cell source to promote NP repair. The overall goal of this study was to assess the effects of CS incorporation into disc derived self-assembled ECM hydrogels on the matrix deposition of NCs. Results showed an increased sGAG production with higher amounts of CS in the gel composition and that its presence was found to be critical for the synthesis of collagen type II. Taken together, our results demonstrate how the inclusion of CS into the composition of the material aids the preservation of a rounded cell morphology for NCs in 3D culture and enhances their ability to synthesise NP-like matrix.
Collapse
|
25
|
Turnbull G, Clarke J, Picard F, Zhang W, Riches P, Li B, Shu W. 3D biofabrication for soft tissue and cartilage engineering. Med Eng Phys 2020; 82:13-39. [PMID: 32709263 DOI: 10.1016/j.medengphy.2020.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Soft tissue injuries (STIs) affect patients of all age groups and represent a common worldwide clinical problem, resulting from conditions including trauma, infection, cancer and burns. Within the spectrum of STIs a mixture of tissues can be injured, ranging from skin to underlying nerves, blood vessels, tendons and cartilaginous tissues. However, significant limitations affect current treatment options and clinical demand for soft tissue and cartilage regenerative therapies continues to rise. Improving the regeneration of soft tissues has therefore become a key area of focus within tissue engineering. As an emerging technology, 3D bioprinting can be used to build complex soft tissue constructs "from the bottom up," by depositing cells, growth factors, extracellular matrices and other biomaterials in a layer-by-layer fashion. In this way, regeneration of cartilage, skin, vasculature, nerves, tendons and other bodily tissues can be performed in a patient specific manner. This review will focus on recent use of 3D bioprinting and other biofabrication strategies in soft tissue repair and regeneration. Biofabrication of a variety of soft tissue types will be reviewed following an overview of available cell sources, bioinks and bioprinting techniques.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom; Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom; Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Weidong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom.
| |
Collapse
|
26
|
Injection route affects intra-articular hyaluronic acid distribution and clinical outcome in viscosupplementation treatment for knee osteoarthritis: a combined cadaver study and randomized clinical trial. Drug Deliv Transl Res 2020; 11:279-291. [PMID: 32514702 DOI: 10.1007/s13346-020-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The coverage of hyaluronic acid (HA) on the impaired cartilage should be the precondition to exert its beneficial effect on knee osteoarthritis (KOA) according to the pharmacological mechanism. However, the intra-articular distribution of HA might be correlated with the route of drug delivery. Forty-two cadaver knees with radiographic evidence of osteoarthritis were given anteromedial (AM) or medial midpatellar (MMP) injection of HA (molecular weight 600-1500 kD) followed by gait stimulation. Although 2.5 ml HA delivered through both routes failed to cover the entire cartilage, HA covered 96.12% cartilage of patellofemoral joint (PFJ) and 71.44% of medial femorotibial joint (FTJ) through MMP route, whereas mainly distributed into FTJ and posterior condyles through AM route. HA in the MMP group distributed more in PFJ than that in the AM group (P < 0.001), but no significant difference presented in medial FTJ (P = 0.084). The clinical efficacy was also associated with the route of drug delivery. One hundred patients with unilateral mild-to-moderate KOA were recruited and randomly assigned to receive five weekly HA injections with AM route (n = 50) or MMP route (n = 50). Patients in the MMP group obtained better improvement in WOMAC index total score, pain score, stiffness score, and Lequesne index total score over the entire follow-up period, as compared to patients in the AM group (all P < 0.01). More patients in the MMP group claimed pain relief (71.7%, P = 0.024) and felt satisfying (63.1%, P = 0.007) than in the AM group at the end of follow-up. Therefore, intra-articular HA injection through MMP route is recommended in treating mild-to-moderate KOA. Graphical Abstract .
Collapse
|
27
|
Gegg C, Tong X, Yang F. Mixed Composition Microribbon Hydrogels Induce Rapid and Synergistic Cartilage Regeneration by Mesenchymal Stem Cells in 3D via Paracrine Signaling Exchange. ACS Biomater Sci Eng 2020; 6:4166-4178. [PMID: 33463346 PMCID: PMC10154175 DOI: 10.1021/acsbiomaterials.0c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hydrogels are widely used matrices for mesenchymal stem cell (MSC)-based cartilage regeneration but often result in slow cartilage deposition with inferior mechanical strength. We recently reported a gelatin-based microribbon (μRB) scaffold, which contains macroporosity and substantially enhances the speed of cartilage formation by MSCs in 3D. However, our previous method cannot be used to fabricate different polymers into μRBs, and the effects of varying μRB compositions on MSC cartilage regeneration in 3D remain unknown. Here, we report a method that allows fabricating different polymers [gelatin, chondroitin sulfate, hyaluronic acid, and polyethylene glycol (PEG)] into μRB structures, which can be mixed in any ratio and cross-linked into 3D scaffolds in a modular manner. Mixing glycosaminoglycan μRBs with gelatin or PEG μRBs induced great synergy, resulting in fast cartilage deposition. After only 3 weeks of culture, leading mixed μRB composition reached high compressive strength on par with native cartilage. Such synergy can be recapitulated via exchange of soluble factors secreted by MSCs seeded in different μRB compositions in a dose-dependent manner. Tuning the ratio of mixed μRB compositions allowed further optimization of the quantity and speed of cartilage regeneration by MSCs. Together, our results validate mixed μRB compositions as a novel biomaterial tool for inducing synergy and accelerating MSC-based cartilage regeneration with biomimetic mechanical properties through paracrine signal exchange.
Collapse
Affiliation(s)
- Courtney Gegg
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, California 94305, United States
| | - Xinming Tong
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Fan Yang
- Departments of Bioengineering and Orthopedic Surgery, Stanford University Schools of Engineering and Medicine, 300 Pasteur Drive, Edwards R105, Stanford, California 94305, United States
| |
Collapse
|
28
|
Cartilage Tissue-Mimetic Pellets with Multifunctional Magnetic Hyaluronic Acid-Graft-Amphiphilic Gelatin Microcapsules for Chondrogenic Stimulation. Polymers (Basel) 2020; 12:polym12040785. [PMID: 32252253 PMCID: PMC7240739 DOI: 10.3390/polym12040785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defect is a common disorder caused by sustained mechanical stress. Owing to its nature of avascular, cartilage had less reconstruction ability so there is always a need for other repair strategies. In this study, we proposed tissue-mimetic pellets composed of chondrocytes and hyaluronic acid-graft-amphiphilic gelatin microcapsules (HA-AGMCs) to serve as biomimetic chondrocyte extracellular matrix (ECM) environments. The multifunctional HA-AGMC with specific targeting on CD44 receptors provides excellent structural stability and demonstrates high cell viability even in the center of pellets after 14 days culture. Furthermore, with superparamagnetic iron oxide nanoparticles (SPIOs) in the microcapsule shell of HA-AGMCs, it not only showed sound cell guiding ability but also induced two physical stimulations of static magnetic field(S) and magnet-derived shear stress (MF) on chondrogenic regeneration. Cartilage tissue-specific gene expressions of Col II and SOX9 were upregulated in the present of HA-AGMC in the early stage, and HA-AGMC+MF+S held the highest chondrogenic commitments throughout the study. Additionally, cartilage tissue-mimetic pellets with magnetic stimulation can stimulate chondrogenesis and sGAG synthesis.
Collapse
|
29
|
Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater 2020; 106:114-123. [PMID: 32027992 DOI: 10.1016/j.actbio.2020.01.046] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Bioprinting is a promising tool to fabricate well-organized cell-laden constructs for repair and regeneration of articular cartilage. The selection of a suitable bioink, in terms of composition and mechanical properties, is crucial for the development of viable cartilage substitutes. In this study, we focused on the use of one of the main cartilage components, hyaluronic acid (HA), to design and formulate a new bioink for cartilage tissue 3D bioprinting. Major characteristics required for this application such as printability, biocompatibility, and biodegradability were analyzed. To produce cartilage constructs with optimal mechanical properties, HA-based bioink was co-printed with polylactic acid (PLA). HA-based bioink was found to improve cell functionality by an increase in the expression of chondrogenic gene markers and specific matrix deposition and, therefore, tissue formation. These results indicate that it is a promising bioink candidate for cartilage tissue engineering based in 3D bioprinting. STATEMENT OF SIGNIFICANCE: The recent appearance of 3D printing technology has enabled great advances in the treatment of osteochondral disorders by fabrication of cartilage tissue constructs that restore and/or regenerate damaged tissue. In this attempt, the selection of a suitable biomaterial, in terms of composition and mechanical properties, is crucial. In this study, we describe for first time the development of a bioink based on the main component of cartilage, HA, with suitable biological and mechanical properties, without involving toxic procedure, and its application in cartilage tissue bioprinting. Hybrid constructs prepared by co-printing this bioink and thermoplastic polymer PLA provided an optimal niche for chondrocyte growth and maintenance as well as mechanical properties necessary to support load forces exerted in native tissue. We highlight the translation potential of this HA-based bioink in the clinical arena.
Collapse
|
30
|
Li XG, Park IS, Choi BH, Kim UJ, Min BH. In Vivo Bioreactor Using Cellulose Membrane Benefit Engineering Cartilage by Improving the Chondrogenesis and Modulating the Immune Response. Tissue Eng Regen Med 2020; 17:165-181. [PMID: 32193874 PMCID: PMC7105552 DOI: 10.1007/s13770-019-00236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To regenerate tissue-engineered cartilage as a source of material for the restoration of cartilage defects, we used a human fetal cartilage progenitor cell pellet to improve chondrogenesis and modulation of the immune response in an in vivo bioreactor (IVB) system. METHODS IVB was buried subcutaneously in the host and then implanted into a cartilage defect. The IVB was composed of a silicone tube and a cellulose nano pore-sized membrane. First, fetal cartilage progenitor cell pellets were cultured in vitro for 3 days, then cultured in vitro, subcutaneously, and in an IVB for 3 weeks. First, the components and liquidity of IVB fluid were evaluated, then the chondrogenesis and immunogenicity of the pellets were evaluated using gross observation, cell viability assays, histology, biochemical analysis, RT-PCR, and Western blots. Finally, cartilage repair and synovial inflammation were evaluated histologically. RESULTS The fluid color and transparency of the IVB were similar to synovial fluid (SF) and the components were closer to SF than serum. The IVB system not only promoted the synthesis of cartilage matrix and maintained the cartilage phenotype, it also delayed calcification compared to the subcutaneously implanted pellets. CONCLUSION The IVB adopted to study cell differentiation was effective in preventing host immune rejection.
Collapse
Affiliation(s)
- Xue Guang Li
- Department of Orthopaedic Surgery, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - In-Su Park
- Cell Therapy Center, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100, Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Ung-Jin Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopaedic Surgery, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Molecular Science and Technology, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
31
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Sodium Hyaluronate Supplemented Culture Media as a New hMSC Chondrogenic Differentiation Media-Model for in vitro/ex vivo Screening of Potential Cartilage Repair Therapies. Front Bioeng Biotechnol 2020; 8:243. [PMID: 32296689 PMCID: PMC7136394 DOI: 10.3389/fbioe.2020.00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Surgical strategies to treat articular cartilage injury such as microfracture, expose human bone marrow stem cells (hMSCs) to synovial fluid and its components. High molecular weight hyaluronan (hMwt HA) is one of the most abundant bioactive macromolecules of healthy synovial fluid (hSF) and it plays an important role in the protection of opposing articular cartilage surfaces within the synovial joint. Although hMwt HA has been extensively used to attempt the engineering of the cartilage tissue, its effect as media supplement has not been established. Indeed, current media are often simple in their composition and doesn't recapitulate the rheological and biological features of hSF. In addition, critical in vivo molecules that can potentially change the chondrogenic behavior of hBMSCs to make the in vitro results more predictive of the real in vivo outcome, are lacking. In order to be one step closer to the in vivo physiology of hSF, a new culture media supplemented with physiological level of hMwt HA was developed and the effect of the hMwt HA on the chondrogenesis of hMSCs that would be present in a traumatic defect after marrow stimulation techniques, was investigated. hBMSC-seeded fibrin-polyurethane constructs were cultured in a serum free chondropermissive control medium (HA- TGFβ-). This medium was further supplemented with 10 ng/mL TGFβ1 (HA- TGFβ+) or 2 mg/ml hMwt HA 1.8 MDa (HA+ TGFβ-) or both (HA+ TGFβ+). Alternatively, 1 MDa HA was mixed with the fibrin at 0.2 mg/ml (HASc TGFβ+). The effect of hMwt HA on hMSC differentiation was investigated at the gene expression level by RT-qPCR and total DNA, sulfated glycosaminoglycans and Safranin O staining were evaluated. Addition of hMwt HA to the culture media, significantly increased the synthesis of sulfated glycosaminoglycans, especially in the early days of chondrogenesis, and reduced the upregulation of the hypertrophic cartilage marker collagen X. hMwt HA added inside the fibrin gel(HASc TGF+) led to the best matrix deposition. hMwt HA can be one key medium component in a more reliable in vitro/ex vivo system to reduce in vitro artifacts, enable more accurate pre-screening of potential cartilage repair therapies and reduce the need for animal studies.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| | - Alicia Jennifer El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Martin James Stoddart
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| |
Collapse
|
32
|
Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 2020; 105:170-179. [PMID: 31982592 DOI: 10.1016/j.actbio.2020.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration. In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical signals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial movements, simulating the natural movements of articular joints. Samples were evaluated for DNA content, sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and histology. Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruction in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage regeneration and repair. STATEMENT OF SIGNIFICANCE: Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for current standard clinical procedures. The aim of the present research was to explore novel procedures and constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical and biochemical stimulation to promote regeneration of damaged cartilage. Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may enhance our understanding of cartilage remodeling and the development of new strategies for cartilage repair and regeneration.
Collapse
|
33
|
Chen T, Ehnert S, Tendulkar G, Zhu S, Arnscheidt C, Aspera-Werz RH, Nussler AK. Primary Human Chondrocytes Affected by Cigarette Smoke-Therapeutic Challenges. Int J Mol Sci 2020; 21:ijms21051901. [PMID: 32164359 PMCID: PMC7084468 DOI: 10.3390/ijms21051901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
Although several researchers have attested deleterious effects of smoking to the musculoskeletal system, the association between smoking and the onset of osteoarthritis (OA) remains unclear. Here, we investigate the effect of cigarette smoke extract (CSE) on primary human chondrocytes. The present study demonstrates that physiological concentrations of CSE (0.1%–10%) inhibit the viability, proliferation, and matrix formation of chondrocytes in a dose- and time-dependent manner. Significant amounts of free radicals were generated by 10% of CSE and led to cell death. A clinical dosage (4 mg/mL) of dexamethasone (Dex) showed toxic effects on chondrocytes, and the long-time treatment by lower doses (4–400 μg/mL) induced hypertrophic changes in the chondrocytes. To substitute Dex, diclofenac (Dic, 1 μg/mL) and acetaminophen (Ace, 10 μg/mL) were tested and did not worsen the metabolic activity of CSE-exposed chondrocytes. Hyaluronic acid (HA, 5 mg/mL) combined with Dic or Ace significantly inhibited the oxidative stress and enhanced the viability and matrix formation of CSE-exposed chondrocytes. This study shows for the first time that CSE mediates the disruption of cartilage through inducing cell death by increasing oxidative stress, and that this effect is fortified by Dex. The deleterious effects of CSE on chondrocytes could be reversed by treatment with HA combined with first-line analgesic/anti-inflammatory agents.
Collapse
|
34
|
Mouser VHM, Levato R, Mensinga A, Dhert WJA, Gawlitta D, Malda J. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res 2020; 61:137-151. [PMID: 30526130 DOI: 10.1080/03008207.2018.1553960] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.
Collapse
Affiliation(s)
- Vivian H M Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wouter J A Dhert
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
Nganvongpanit K, Euppayo T, Siengdee P, Buddhachat K, Chomdej S, Ongchai S. Post-treatment of hyaluronan to decrease the apoptotic effects of carprofen in canine articular chondrocyte culture. PeerJ 2020; 8:e8355. [PMID: 32030322 PMCID: PMC6995269 DOI: 10.7717/peerj.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
A major concern associated with the use of drugs is their adverse side effects. Specific examples of the drugs of concern include antibiotic agents and non-steroidal anti-inflammatory drugs. Despite the presence of a high degree of efficacy for specific conditions, these drugs may deteriorate the surrounding tissues that are exposed to them. Often, carprofen is used for joint inflammation; however, it may stimulate cartilage degradation which can then lead to osteoarthritis progression. In this study, hyaluronan was combined with carprofen treatment in three different applications (pre-treatment, co-treatment and post-treatment) on normal canine chondrocytes to determine whether Hyaluronan (HA) is capable of mitigating the degree of chondrotoxicity of carprofen. Our findings revealed that carprofen at IC20 (0.16 mg/mL) decreased viability and increased nitric oxide (NO) production. Importantly, carprofen induced the apoptosis of canine chondrocytes via the up-regulation of Bax, Casp3, Casp8, Casp9 and NOS2 as compared to the control group. Although the co-treatment of HA and carprofen appeared not to further alleviate the chondrotoxicity of carprofen due to the presence of a high number of apoptotic chondrocytes, post-treatment with HA (carprofen treatment for 24 h and then changed to HA for 24 h) resulted in a decrease in chondrocyte apoptosis by the down-regulation of Bax, Casp3, Casp8, Casp9, NOS2, along with NO production when compared with the treatment of carprofen for 48 h (P < 0.05). These results suggest that HA can be used as a therapeutic agent to mitigate the degree of chondrotoxicity of carprofen.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwan Ongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
36
|
Abdel-Mottaleb MM, Abd-Allah H, El-Gogary RI, Nasr M. Versatile hyaluronic acid nanoparticles for improved drug delivery. DRUG DELIVERY ASPECTS 2020:1-18. [DOI: 10.1016/b978-0-12-821222-6.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Henrotin Y, Chevalier X, Raman R, Richette P, Montfort J, Jerosch J, Baron D, Bard H, Carrillon Y, Migliore A, Conrozier T. EUROVISCO Guidelines for the Design and Conduct of Clinical Trials Assessing the Disease-Modifying Effect of Knee Viscosupplementation. Cartilage 2020; 11:60-70. [PMID: 29972025 PMCID: PMC6921954 DOI: 10.1177/1947603518783521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Hyaluronic acid viscosupplementation is a commonly used intra-articular treatment for osteoarthritis (OA). Some recent preclinical and clinical trials have demonstrated a potential for its disease-modifying effects. The goal of this expert opinion, consensus-driven exercise is to provide guidelines for the design and conduct of clinical trials assessing the disease-modifying effect of viscosupplementation in the knee. METHODS The EUROVISCO group constitutes 10 members who had expertise in clinical research methodology in the field of OA and viscosupplementation. They initially drafted issues through an iterative process and had to vote on their degree of agreement on these recommendations. The scores were pooled to generate a median agreement score for each recommendation. RESULTS The document includes 31 recommendations regarding study population, imaging, clinical and biological assessment of disease-modifying effects of viscosupplementation. Agreements were reached on some recommendations. In particular, the experts reached unanimous agreement on double-blind study design, imaging primary outcomes, time interval between 2 radiographs, x-ray procedure standardization, and the combined use of imaging and biological markers. The group did not recommend the use of ultrasonography, computed tomography (CT) scan and CT arthrography as a tool for OA diagnosis or to assess progression over time. CONCLUSION In summary, the working group identified 31 recommendations that represent the current best practices regarding clinical trials that target the assessment of viscosupplementation disease-modifying effects in patients with knee OA. These recommendations integrate new imaging technologies and soluble biomarkers.
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit,
Université de Liège, Liège, Belgium
| | - Xavier Chevalier
- Paris XII University, UPEC, Department
of Rheumatology, Henri Mondor Hospital, Creteil, France
| | - Raghu Raman
- Academic Department of Orthopaedics,
Hull and East Yorkshire NHS Trust, Castle Hill Hospital, Cottingham, UK
| | - Pascal Richette
- Université Paris Diderot, UFR Médicale,
Hôpital Lariboisière, Paris, France
| | - Jordi Montfort
- Servei de Reumatologia, Hospital del
Mar, Parc de Salut Mar, Barcelona, Catalonia, Spain
| | - Jörg Jerosch
- Orthopedic Department,
Johanna-Etienne-Hospital, Neuss, Nordrhein-Westfalen, Germany
| | - Dominique Baron
- Centre de réadaptation fonctionnelle de
Lannion-Trestel, Trévou-Tréguignec, France
| | - Hervé Bard
- Department of Rheumatology, Hôpital
Européen Georges-Pompidou, Paris, France
| | | | - Alberto Migliore
- U.O.S. of Rheumatology, Ospedale San
Pietro Fatebenefratelli, Rome, Italy
| | - Thierry Conrozier
- Department of Rheumatology, Hôpital
Nord Franche-Comté, Belfort, France
| |
Collapse
|
38
|
Di Benedetto A, Posa F, Marazzi M, Kalemaj Z, Grassi R, Lo Muzio L, Comite MD, Cavalcanti-Adam EA, Grassi FR, Mori G. Osteogenic and Chondrogenic Potential of the Supramolecular Aggregate T-LysYal®. Front Endocrinol (Lausanne) 2020; 11:285. [PMID: 32431670 PMCID: PMC7214626 DOI: 10.3389/fendo.2020.00285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Hard tissue regeneration represents a challenge for the Regenerative Medicine and Mesenchymal stem cells (MSCs) could be a successful therapeutic strategy. T-LysYal® (T-Lys), a new derivative of Hyaluronic Acid (HA) possessing a superior stability, has already been proved efficient in repairing corneal epithelial cells damaged by dry conditions in vitro. We investigated the regenerative potential of T-Lys in the hard tissues bone and cartilage. We have previously demonstrated that cells isolated from the tooth germ, Dental Bud Stem Cells (DBSCs), differentiate into osteoblast-like cells, representing a promising source of MSCs for bone regeneration. Herewith, we show that T-Lys treatment stimulates the expression of typical osteoblastic markers, such as Runx-2, Collagen I (Col1) and Alkaline Phosphatase (ALP), determining a higher production of mineralized matrix nodules. In addition, we found that T-Lys treatment positively affects αVβ3 integrin expression, key integrin in the osteoblastic commitment, leading to the formation of focal adhesions (FAs). The efficacy of T-Lys was also tested on chondrogenic differentiation starting from human articular chondrocytes (HACs) resulting in an increase of differentiation markers and cell number.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Biophysical Chemistry, Heidelberg University & Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, Niguarda Hospital, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Zamira Kalemaj
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Roberta Grassi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Biophysical Chemistry, Heidelberg University & Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Felice Roberto Grassi
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Giorgio Mori
| |
Collapse
|
39
|
Kim WK, Choi JH, Shin ME, Kim JW, Kim PY, Kim N, Song JE, Khang G. Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel. Int J Biol Macromol 2019; 141:51-59. [DOI: 10.1016/j.ijbiomac.2019.08.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023]
|
40
|
Induction of Articular Chondrogenesis by Chitosan/Hyaluronic-Acid-Based Biomimetic Matrices Using Human Adipose-Derived Stem Cells. Int J Mol Sci 2019; 20:ijms20184487. [PMID: 31514329 PMCID: PMC6770472 DOI: 10.3390/ijms20184487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Cartilage repair using tissue engineering is the most advanced clinical application in regenerative medicine, yet available solutions remain unsuccessful in reconstructing native cartilage in its proprietary form and function. Previous investigations have suggested that the combination of specific bioactive elements combined with a natural polymer could generate carrier matrices that enhance activities of seeded stem cells and possibly induce the desired matrix formation. The present study sought to clarify this by assessing whether a chitosan-hyaluronic-acid-based biomimetic matrix in conjunction with adipose-derived stem cells could support articular hyaline cartilage formation in relation to a standard chitosan-based construct. By assessing cellular development, matrix formation, and key gene/protein expressions during in vitro cultivation utilizing quantitative gene and immunofluorescent assays, results showed that chitosan with hyaluronic acid provides a suitable environment that supports stem cell differentiation towards cartilage matrix producing chondrocytes. However, on the molecular gene expression level, it has become apparent that, without combinations of morphogens, in the chondrogenic medium, hyaluronic acid with chitosan has a very limited capacity to stimulate and maintain stem cells in an articular chondrogenic state, suggesting that cocktails of various growth factors are one of the key features to regenerate articular cartilage, clinically.
Collapse
|
41
|
Barakat AS, Ibrahim NM, Elghobashy O, Sultan AM, Abdel-Kader KFM. Prevention of post-traumatic osteoarthritis after intra-articular knee fractures using hyaluronic acid: a randomized prospective pilot study. INTERNATIONAL ORTHOPAEDICS 2019; 43:2437-2445. [PMID: 31230119 DOI: 10.1007/s00264-019-04360-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Based on the irreversible destruction of hyaline cartilage, post-traumatic osteoarthritis (PTOA) is a notorious sequelae after intra-articular knee fractures. This study evaluates the clinical efficacy and applicability of immediate post-operative intra-articular injection of hyaluronic acid (IA HA) into the knee joint with an intra-articular fracture. METHODS Prospective randomized case-control study involving 40 patients (20 in each group) with intra-articular knee fracture with an average follow-up of 23 months (range 18-24 months). Twenty patients with intra-articular distal femoral or intra-articular proximal tibial fractures who met our inclusion criteria received three intra-articular hyaluronic acid injections weekly starting immediately after ORIF. Another 20 patients serving as a control group received no injection after ORIF. Patients were assessed functionally with Knee injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) score. Plain X-rays and when indicated CT scans were used to assess radiological union. RESULTS The results showed patients treated with intra-articular hyaluronic acid injection after fixation had significantly less pain (KOOS) (p = 0.01). No significant difference was found between both groups in other KOOS-related outcome measures, complications, functional outcome, or quality of life. CONCLUSIONS These preliminary results support a direct role for hyaluronic acid in the acute phase of the inflammatory process that follows articular injury and provides initial evidence for the efficacy of IA HA.
Collapse
Affiliation(s)
| | | | - Osama Elghobashy
- Orthopedics Department, Sligo University Hospital, Sligo, Ireland
| | | | | |
Collapse
|
42
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
43
|
Al-Rekabi Z, Fura AM, Juhlin I, Yassin A, Popowics TE, Sniadecki NJ. Hyaluronan-CD44 interactions mediate contractility and migration in periodontal ligament cells. Cell Adh Migr 2019; 13:138-150. [PMID: 30676222 PMCID: PMC6527381 DOI: 10.1080/19336918.2019.1568140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA
| | - Adriane M Fura
- b Department of Bioengineering , University of Washington , Seattle , WA , USA
| | - Ilsa Juhlin
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA
| | - Alaa Yassin
- c Department of Periodontics , University of Washington , Seattle , WA , USA
| | - Tracy E Popowics
- d Department of Oral Health Sciences , University of Washington , Seattle , WA , USA
| | - Nathan J Sniadecki
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA.,b Department of Bioengineering , University of Washington , Seattle , WA , USA.,e Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
44
|
Hyaluronan microenvironment enhances cartilage regeneration of human adipose-derived stem cells in a chondral defect model. Int J Biol Macromol 2018; 119:726-740. [DOI: 10.1016/j.ijbiomac.2018.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
|
45
|
Jiang X, Liu J, Liu Q, Lu Z, Zheng L, Zhao J, Zhang X. Therapy for cartilage defects: functional ectopic cartilage constructed by cartilage-simulating collagen, chondroitin sulfate and hyaluronic acid (CCH) hybrid hydrogel with allogeneic chondrocytes. Biomater Sci 2018; 6:1616-1626. [PMID: 29737330 DOI: 10.1039/c8bm00354h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To regenerate functional cartilage-mimicking ectopic cartilage as a source for the restoration of cartilage defects, we used a previously synthesized three-phase collagen, chondroitin sulfate and hyaluronic acid (CCH) hydrogel for the encapsulation of allogeneic chondrocytes with a diffusion chamber system that was buried subcutaneously in the host for 4 weeks and then implanted into a cartilage defect. METHODS The CCH hydrogel was prepared and seeded with allogeneic chondrocytes from new-born rabbits, prior to being enveloped in a diffusion chamber that prevents cell ingrowth and vascular invasion of the host, as described previously. A collagen hydrogel (C) was used as the control. The diffusion chamber was embedded subcutaneously in an adult rabbit. 4 weeks later, the regenerated tissue was harvested from the diffusion chamber and then further used for cartilage repair in the same host. To evaluate the regenerated tissue, cell viability assay using calcein-acetoxymethyl (calcein-AM)/propidium iodide (PI) staining, biochemical analysis by examination of total DNA and GAG content, gene expression detection using RT-PCR for Col 1a1, Col 2a1, Acan, and Sox9, biomechanical detection and histological evaluation were implemented. RESULTS Analysis of the cell activity and biochemical evaluation in vitro showed that cell proliferation, GAG secretion and gene/protein expression of cartilage specific markers were much higher in the CCH group than those in the C group. The CCH constructed ectopic cartilage tissue in vivo showed the typical characteristics of hyaline cartilage with higher expression of cartilage matrix markers compared with the C groups, as evidenced by morphological and histological findings as well as RT-PCR analysis. Furthermore, ectopic cartilage from CCH successfully facilitated the cartilage restoration, with higher morphological and histological scores and greater mechanical strength than that from C. CONCLUSION The three-phase CCH hydrogel, which is closer to natural cartilage matrix and is stiffer than collagen, may replace collagen as the "gold standard" for cartilage tissue engineering. This study may provide a new insight for cartilage repair using ectopic cartilage reconstructed from functional materials and allogeneic cells.
Collapse
Affiliation(s)
- Xianfang Jiang
- The College of Stomatology of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | | | |
Collapse
|
46
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
47
|
Spitters TWGM, Andersen PL, Martel C, Vermette P. Multiple-Condition Analysis in a Retrievable Subcutaneous Animal Model for Drug Screening on Full Pancreatic Tissue Digest. Assay Drug Dev Technol 2018; 16:462-471. [PMID: 30106594 DOI: 10.1089/adt.2018.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lack of understanding on how to treat pancreas-related diseases and develop new therapeutics is partly due to the unavailability of appropriate models. In vitro models fail to provide a physiological environment. Testing new drug targets in these models can give rise to bias and misleading results. Therefore, we developed an in vivo model for drug testing on full pancreatic digests, which maintains the interactions between endo- and exocrine tissues and allows retrieving the samples for further analyses. The use of full pancreatic digest eliminates the need to isolate islets, reducing time and cost. In this model, four different conditions can be implanted subcutaneously within the same animal. Each condition consists of full pancreatic tissue digests embedded in alginate beads. All alginate beads in one animal contained full pancreatic digest of the same donor and, after 5-day implantation, were retrieved for analysis focusing on survival, function, and/or organization. Proof-of-principle of the platform was evidenced by showing the effect of hyaluronic acid and vascular endothelial growth factor on the overall function of the full pancreatic digest and on endothelial cells in the pancreatic digest, respectively. Retrieval from identical animals allows direct comparison between conditions. Metabolism (MTT) quantification, dithizone staining, and glucose-stimulated insulin secretion assessment allow to discriminate, using a minimal number of animals, between treatments and validate the system. Because of its simplicity, the model is highly adaptable to specific needs of the user.
Collapse
Affiliation(s)
- Tim W G M Spitters
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Parker L Andersen
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Chloé Martel
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| |
Collapse
|
48
|
Gansau J, Buckley CT. Incorporation of Collagen and Hyaluronic Acid to Enhance the Bioactivity of Fibrin-Based Hydrogels for Nucleus Pulposus Regeneration. J Funct Biomater 2018; 9:E43. [PMID: 29996555 PMCID: PMC6164980 DOI: 10.3390/jfb9030043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
Hydrogels, such as fibrin, offer a promising delivery vehicle to introduce cells into the intervertebral disc (IVD) to regenerate damaged disc tissue as a potential treatment for low back pain. However, fibrin lacks key extracellular matrix (ECM) components, such as collagen (Col) and hyaluronan (HA), normally found in native nucleus pulposus (NP) tissue. The overall aim of this work was to create a fibrin-based hydrogel, by incorporating Col and HA into the matrix to enhance NP-like matrix accumulation using articular chondrocytes (CC). Firstly, we assessed the effect of fibrin concentrations on hydrogel stability, and the viability and proliferation kinetics of articular chondrocytes. Secondly, we investigated the effect of incorporating Col and HA to enhance NP-like matrix accumulation, and finally, examined the influence of various HA concentrations. Results showed that increasing fibrin concentration enhanced cell viability and proliferation. Interestingly, incorporation of HA promoted sGAG accumulation and tended to suppress collagen formation at higher concentrations. Taken together, these results suggest that incorporation of ECM components can enhance the bioactivity of fibrin-based hydrogels, which may help advance the clinical potential of commercial cell and biomaterial ventures in the treatment of IVD regeneration.
Collapse
Affiliation(s)
- Jennifer Gansau
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland.
- School of Engineering, Trinity College Dublin, 2 Dublin, Ireland.
| | - Conor Timothy Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland.
- School of Engineering, Trinity College Dublin, 2 Dublin, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, 2 Dublin, Ireland.
| |
Collapse
|
49
|
Şahin Ş, Tuncel SA, Salimi K, Bilgiç E, Korkusuz P, Korkusuz F. Advanced Injectable Alternatives for Osteoarthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:183-196. [DOI: 10.1007/978-981-13-0947-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Tanaka T, Furumatsu T, Miyazawa S, Fujii M, Inoue H, Kodama Y, Ozaki T. Hyaluronan stimulates chondrogenic gene expression in human meniscus cells. Connect Tissue Res 2017; 58:520-530. [PMID: 27898233 DOI: 10.1080/03008207.2016.1264944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim of the Study: Inner meniscus cells have a chondrocytic phenotype, whereas outer meniscus cells have a fibroblastic phenotype. In this study, we examined the effect of hyaluronan on chondrocytic gene expression in human meniscus cells. MATERIALS AND METHODS Human meniscus cells were prepared from macroscopically intact lateral meniscus. Inner and outer meniscus cells were obtained from the inner and outer halves of the meniscus. The cells were stimulated with hyaluronan diluted in Dulbecco's modified Eagle's medium without serum to the desired concentration (0, 10, 100, and 1000 μg/mL) for 2-7 days. Cellular proliferation, migration, and polymerase chain reaction analyses were performed for the inner and outer cells separately. Meniscal samples perforated by a 2 mm diameter punch were maintained for 3 weeks in hyaluronan-supplemented medium and evaluated by histological analyses. RESULTS Hyaluronan increased the proliferation and migration of both meniscus cell types. Moreover, cellular counts at the surface of both meniscal tissue perforations were increased by hyaluronan treatments. In addition, hyaluronan stimulated α1(II) collagen expression in inner meniscus cells. Accumulation of type II collagen at the perforated surface of both meniscal samples was induced by hyaluronan treatment. Hyaluronan did not induce type I collagen accumulation around the injured site of the meniscus. CONCLUSION Hyaluronan stimulated the proliferation and migration of meniscus cells. Our results suggest that hyaluronan may promote the healing potential of meniscus cells in damaged meniscal tissues.
Collapse
Affiliation(s)
- Takaaki Tanaka
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Takayuki Furumatsu
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Shinichi Miyazawa
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Masataka Fujii
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Hiroto Inoue
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Yuya Kodama
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Toshifumi Ozaki
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| |
Collapse
|