1
|
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Aleksandrovich Vetoshkin A, Gavriilovich Goncharov N, Encarnación Ramirez MDJ, Montemurro N. Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Med Sci (Basel) 2024; 12:32. [PMID: 39051378 PMCID: PMC11270198 DOI: 10.3390/medsci12030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Avascular necrosis (AVN) of the femoral head is a pressing orthopedic issue, leading to bone tissue death due to disrupted blood supply and affecting the quality of life of individuals significantly. This review focuses on conservative treatments, evaluating their efficacy as mainstay therapies. Enhanced understanding of AVN's pathophysiology and advancements in diagnostic tools have rekindled interest in non-surgical interventions, emphasizing personalized, multidisciplinary approaches for improved outcomes. MATERIAL AND METHOD A systematic search was conducted on PubMed, SCOPUS, and Google Scholar databases from January 2020 to August 2023, with the objective of focusing on conservative treatments for AVN of the femoral head. Eligible studies, including original research, case reports, and observational studies, were examined for relevant, well-documented patient outcomes post-conservative treatments, excluding non-English and surgically focused articles without comparative conservative data. RESULTS A systematic search yielded 376 records on AVN of the femoral head across multiple databases. After de-duplication and rigorous screening for relevance and quality, 11 full-text articles were ultimately included for a comprehensive qualitative synthesis, focusing on conservatively managing the condition. CONCLUSIONS This review evaluates the effectiveness of conservative treatments such as pharmacological interventions and physical modalities in managing AVN of the femoral head. Despite promising results in symptom alleviation and disease progression delay, variability in outcomes and methodological limitations in studies necessitate further rigorous, randomized controlled trials for a robust, patient-centric approach to optimize therapeutic outcomes in AVN management.
Collapse
Affiliation(s)
| | | | - Eduard Nikolaevich Bezuglov
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | | | | | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
2
|
Quan H, Ren C, He Y, Wang F, Dong S, Jiang H. Application of Biomaterials in Treating Early Osteonecrosis of the Femoral Head: Research Progress and Future Perspectives. Acta Biomater 2023; 164:15-73. [PMID: 37080444 DOI: 10.1016/j.actbio.2023.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Osteonecrosis of the femoral head (ONFH), a progressive pathological process of femoral head ischemia and osteocyte necrosis, is a refractory orthopedic disease caused by multiple etiologies and there is no complete cure at present. With the extension of ONFH duration, osteocyte apoptosis and trabecular bone loss can decrease the load-bearing capacity of the femoral head, which leads to the collapse of the articular cartilage and subchondral bone. Therefore, an urgent clinical need exists to develop effective treatment strategies of early-stage ONFH for maintaining the hip joint function and preventing femoral head collapse. In recent years, extensive attention has been paid to the application of diverse biomaterials in treating early ONFH for sustaining the normal morphology and function of the autologous femoral head, and slowing disease progression. Herein, we review the research progress of bone grafts, metallic materials, bioceramics, bioglasses and polymer materials for early ONFH treatment, and discuss the biological mechanisms of bone repair and regeneration in the femoral-head necrotic area. We propose suggestions for future research directions, from a special perspective of improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts (VAOs) generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts (BAOs) and BAO-mediated bone resorption. This review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH. STATEMENT OF SIGNIFICANCE: We believe that at least three aspects of this manuscript make it interesting to readers of the Acta Biomaterialia. First, we briefly summarize the incidence, pathogenesis, risk factors, classification criteria and treatment of early osteonecrosis of the femoral head (ONFH). Second, we review the research progress in biomaterials for early ONFH treatment and the biological mechanisms of bone repair and regeneration in femoral-head necrotic area. Third, we propose future research progress on improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts and bone resorption. We hope this review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH.
Collapse
Affiliation(s)
- Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chencan Ren
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Che Z, Song Y, Zhu L, Liu T, Li X, Huang L. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet 2022; 13:1037190. [PMID: 36452155 PMCID: PMC9702520 DOI: 10.3389/fgene.2022.1037190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tengyue Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xudong Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lanfeng Huang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, Dias IR. Mesenchymal Stem Cell Studies in the Goat Model for Biomedical Research-A Review of the Scientific Literature. BIOLOGY 2022; 11:1276. [PMID: 36138755 PMCID: PMC9495984 DOI: 10.3390/biology11091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew, while maintaining the capacity to differentiate into different cellular lineages, presumably from their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory, and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and regenerative medicine applications. Appropriate animal models are crucial for the development and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating diseases with the hope of application in upcoming human clinical trials. Here, we summarize the latest research focused on studying the biological and therapeutic potential of MSCs in the goat model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology fields.
Collapse
Affiliation(s)
- Inês E. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Carlos A. Viegas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Maria J. Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge M. Azevedo
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Department of Animal Science, ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro P. Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| | - Isabel R. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Murab S, Hawk T, Snyder A, Herold S, Totapally M, Whitlock PW. Tissue Engineering Strategies for Treating Avascular Necrosis of the Femoral Head. Bioengineering (Basel) 2021; 8:200. [PMID: 34940353 PMCID: PMC8699035 DOI: 10.3390/bioengineering8120200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Avascular necrosis (AVN) of the femoral head commonly leads to symptomatic osteoarthritis of the hip. In older patients, hip replacement is a viable option that restores the hip biomechanics and improves pain but in pediatric, adolescent, and young adult patients hip replacements impose significant activity limitations and the need for multiple revision surgeries with increasing risk of complication. Early detection of AVN requires a high level of suspicion as diagnostic techniques such as X-rays are not sensitive in the early stages of the disease. There are multiple etiologies that can lead to this disease. In the pediatric and adolescent population, trauma is a commonly recognized cause of AVN. The understanding of the pathophysiology of the disease is limited, adding to the challenge of devising a clinically effective treatment strategy. Surgical techniques to prevent progression of the disease and avoid total hip replacement include core decompression, vascular grafts, and use of bone-marrow derived stem cells with or without adjuncts, such as bisphosphonates and bone morphogenetic protein (BMP), all of which are partially effective only in the very early stages of the disease. Further, these strategies often only improve pain and range of motion in the short-term in some patients and do not predictably prevent progression of the disease. Tissue engineering strategies with the combined use of biomaterials, stem cells and growth factors offer a potential strategy to avoid metallic implants and surgery. Structural, bioactive biomaterial platforms could help in stabilizing the femoral head while inducing osteogenic differentiation to regenerate bone and provide angiogenic cues to concomitantly recover vasculature in the femoral head. Moreover, injectable systems that can be delivered using a minimal invasive procedure and provide mechanical support the collapsing femoral head could potentially alleviate the need for surgical interventions in the future. The present review describes the limitations of existing surgical methods and the recent advances in tissue engineering that are leading in the direction of a clinically effective, translational solution for AVN in future.
Collapse
Affiliation(s)
- Sumit Murab
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Teresa Hawk
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Alexander Snyder
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Sydney Herold
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Meghana Totapally
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Patrick W. Whitlock
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
7
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
9
|
Zhao H, Yeersheng R, Xia Y, Kang P, Wang W. Hypoxia Enhanced Bone Regeneration Through the HIF-1α/β-Catenin Pathway in Femoral Head Osteonecrosis. Am J Med Sci 2021; 362:78-91. [PMID: 33727018 DOI: 10.1016/j.amjms.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 03/11/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a common disease. Transplantation of bone marrow stem cells (BMSCs) is a promising method to treat ONFH but is impeded by the low survival rate and deficiency of cell bioactivity. METHODS We performed hypoxic preprocessing to treat BMSCs and assessed cell viability, apoptosis, differentiation, and growth factor expression in vitro. Subsequently, we constructed the ONFH model and delivered hypoxia-pretreated BMSCs to the rabbit femoral head after core decompression surgery, evaluating its effects on bone regeneration and ONFH repair. Six weeks later, micro-computed tomography (CT) and histopathology were performed to evaluate ONFH repair. RESULTS Our findings demonstrated that hypoxic preprocessing promoted the viability of BMSCs, increased the expression of hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), alkaline phosphatase (ALP), calcium deposition, and enhanced the formation of vessels-shaped structures. In an in vivo study, micro-CT observations demonstrated that the bone volume was increased in the hypoxia BMSCs group. Histological examination revealed reduced cellular apoptosis, lower empty lacunae rate, enhanced bone formation, and stronger trabecular bone in the hypoxia BMSCs group when compared with those transplanted with normoxia treated BMSCs. Additionally, immunological assessment of the hypoxia BMSCs group demonstrated increased expression of HIF-1α and β-catenin, as well as increased VEGF, ALP, osteocalcin (OCN), and collagen type I (Col-1). CONCLUSIONS Collectively, our findings indicated that hypoxia stimulated angiogenesis and bone regeneration via the HIF-1/β-catenin pathway in BMSCs and that the delivery of hypoxia-pretreated BMSCs contributed to the treatment of early ONFH.
Collapse
Affiliation(s)
- HaiYan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Releken Yeersheng
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - YaYi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - PengDe Kang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - WenJi Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Goodman SB, Maruyama M. Inflammation, Bone Healing and Osteonecrosis: From Bedside to Bench. J Inflamm Res 2020; 13:913-923. [PMID: 33223846 PMCID: PMC7671464 DOI: 10.2147/jir.s281941] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis of the epiphyseal and metaphyseal regions of major weight-bearing bones of the extremities is a condition that is associated with local death of bone cells and marrow in the afflicted compartment. Chronic inflammation is a prominent feature of osteonecrosis. If the persistent inflammation is not resolved, this process will result in progressive collapse and subsequent degenerative arthritis. In the pre-collapse stage of osteonecrosis, attempt at joint preservation rather than joint replacement in this younger population with osteonecrosis is a major clinical objective. In this regard, core decompression, with/without local injection of bone marrow aspirate concentrate (BMAC), is an accepted and evidence-based method to help arrest the progression and improve the outcome of early-stage osteonecrosis. However, some patients do not respond favorably to this treatment. Thus, it is prudent to consider strategies to mitigate chronic inflammation concurrent with addressing the deficiencies in osteogenesis and vasculogenesis in order to save the affected joint. Interestingly, the processes of inflammation, osteonecrosis, and bone healing are highly inter-related. Therefore, modulating the biological processes and crosstalk among cells of the innate immune system, the mesenchymal stem cell-osteoblast lineage and others are important to providing the local microenvironment for resolution of inflammation and subsequent repair. This review summarizes the clinical and biologic principles associated with osteonecrosis and provides potential cutting-end strategies for modulating chronic inflammation and facilitating osteogenesis and vasculogenesis using local interventions. Although these studies are still in the preclinical stages, it is hoped that safe, efficacious, and cost-effective interventions will be developed to save the host’s natural joint.
Collapse
Affiliation(s)
- Stuart B Goodman
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.,Departments of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Shu P, Sun DL, Shu ZX, Tian S, Pan Q, Wen CJ, Xi JY, Ye SN. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum Gene Ther 2020; 31:286-296. [PMID: 32013585 DOI: 10.1089/hum.2019.306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common and disabling joint disease. Although there is no clear consensus on the complex pathogenic mechanism of ONFH, trauma, abuse of glucocorticoids, and alcoholism are implicated in its etiology. The therapeutic strategies are still limited, and the clinical outcomes are not satisfactory. Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on ONFH in preclinical experiments and clinical trials. The beneficial properties of MSCs are due, at least in part, to their ability to home to the injured tissue, secretion of paracrine signaling molecules, and multipotentiality. Nevertheless, the regenerative capacity of transplanted cells is impaired by the hostile environment of necrotic tissue in vivo, limiting their clinical efficacy. Recently, genetic engineering has been introduced as an attractive strategy to improve the regenerative properties of MSCs in the treatment of early-stage ONFH. This review summarizes the function of several genes used in the engineering of MSCs for the treatment of ONFH. Further, current challenges and future perspectives of genetic manipulation of MSCs are discussed. The notion of genetically engineered MSCs functioning as a "factory" that can produce a significant amount of multipotent and patient-specific therapeutic product is emphasized.
Collapse
Affiliation(s)
- Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Long Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zi Xing Shu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Pan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen Jin Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Ya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shu Nan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gugjoo MB, Amarpal, Fazili MUR, Shah RA, Saleem Mir M, Sharma GT. Goat mesenchymal stem cell basic research and potential applications. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Maruyama M, Lin T, Pan CC, Moeinzadeh S, Takagi M, Yang YP, Goodman SB. Cell-Based and Scaffold-Based Therapies for Joint Preservation in Early-Stage Osteonecrosis of the Femoral Head. JBJS Rev 2019; 7:e5. [DOI: 10.2106/jbjs.rvw.18.00202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Wang G, Li Y, Sun T, Wang C, Qiao L, Wang Y, Dong K, Yuan T, Chen J, Chen G, Sun S. BMSC affinity peptide-functionalized β-tricalcium phosphate scaffolds promoting repair of osteonecrosis of the femoral head. J Orthop Surg Res 2019; 14:204. [PMID: 31272458 PMCID: PMC6610984 DOI: 10.1186/s13018-019-1243-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a disabling disease. Early treatment is crucial to the prognosis of the disease. Core decompression (CD) is one of the most commonly used methods for the treatment of early ONFH. But it could not prevent the collapse of the necrotic femoral head. How to improve the therapeutic effect of early ONFH on the basis of CD has become an area of focused research. METHODS Functional β-tricalcium phosphate (β-TCP) scaffolds modified by DPIYALSWSGMA (DPI) peptide, a bone marrow-derived mesenchymal stem cell (BMSC) affinity peptide, were constructed using an adsorption/freeze-drying strategy. The affinity of DPI peptide towards rabbit BMSCs was investigated using flow cytometry and fluorescence cytochemistry. In vitro cell adhesion assay was performed to study the adherent ability of rabbit BMSCs on functional β-TCP scaffolds. After the rabbit model of early ONFH was established, DPI peptide-modified and pure β-TCP scaffolds were transplanted into the remaining cavity after CD. Meanwhile, rabbits treated with pure CD were used as blank control. Twelve weeks after surgery, histological analysis was performed to show the therapeutic effect of three methods on early ONFH. RESULTS The result of ImageXpress Micro Confocal indicated that fabricated DPI peptide-modified functional β-TCP scaffolds exhibited green fluorescence. In flow cytometry, the average fluorescence intensity for rabbit BMSCs incubated with FITC-DPI was significantly higher than that of FITC-LSP (P = 2.733 × 10-8). In fluorescence cytochemistry, strong fluorescent signals were observed in rabbit BMSCs incubated with FITC-DPI and FITC-RGD, whereas no fluorescent signals in cells incubated with FITC-LSP. In cell adhesion assay, the number of adherent cells to β-TCP-DPI scaffolds was more than that of pure β-TCP scaffolds (P = 0.033). The CD + β-TCP-DPI group expressed the lowest vacant bone lacunae percentage compared to CD group (P = 2.350 × 10-4) and CD + β-TCP group (P = 0.020). The expression content of COL1 in CD + β-TCP-DPI group was much higher than CD group (P = 1.262 × 10-7) and CD + β-TCP group (P = 1.666 × 10-7) according to the integrated optical density (IOD) analyses. CONCLUSION Functional β-TCP scaffolds modified by DPI peptide were successfully synthesized using an adsorption/freeze-drying strategy. DPI peptide has good affinity towards rabbit BMSCs. The adhesion of rabbit BMSCs on DPI peptide-modified β-TCP scaffolds was apparently enhanced. CD followed by implantation of DPI peptide-modified β-TCP scaffolds can apparently improve the treatment of early ONFH compared with pure CD and CD followed by implantation of unmodified β-TCP scaffolds. Our current study provides an improved method for the treatment of early ONFH.
Collapse
Affiliation(s)
- Guozong Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.,College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Tiantong Sun
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Congcong Wang
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Qiao
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Wang
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Kangkang Dong
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Yuan
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jiazheng Chen
- College of Clinical Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Guanqiao Chen
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Luo Y, Li D, Xie X, Kang P. Porous, lithium-doped calcium polyphosphate composite scaffolds containing vascular endothelial growth factor (VEGF)-loaded gelatin microspheres for treating glucocorticoid-induced osteonecrosis of the femoral head. Biomed Mater 2019; 14:035013. [DOI: 10.1088/1748-605x/ab0a55] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Wang C, Liu D, Xie Q, Liu J, Deng S, Gong K, Huang C, Yin L, Xie M, Guo Z, Zheng W. A 3D Printed Porous Titanium Alloy Rod with Diamond Crystal Lattice for Treatment of the Early-Stage Femoral Head Osteonecrosis in Sheep. Int J Med Sci 2019; 16:486-493. [PMID: 30911283 PMCID: PMC6428983 DOI: 10.7150/ijms.30832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Instruments made of porous titanium alloy and fabricated with a 3D printed technique are increasingly used in experimental and clinical research. To date, however, few studies have assessed their use in early-stage osteonecrosis of the femoral head (ONFH). In this study, porous titanium alloy rods (Ti-Rod) with diamond crystal lattice, fabricated using an electron beam melting (EBM) technique, were implanted into sheep models (n=9) of early-stage ONFH for 6 months. Bone ingrowth and integration were investigated and compared with those of sheep (n=9) undergoing core decompression (CD) alone. Following Ti-Rod implantation, femoral heads showed fine osteointegration, with X-ray evaluation showing compact integration between peripheral bone and rods without radiolucent lines encircling the rods, as well as new bone growth along the metal trabeculae without the intervention of fibrous tissue. The regions of interest (ROIs) of femoral heads showed fine bone ingrowth after Ti-Rod implantation than CD alone. By micro-CT evaluation, the ratios of bone volume to total volume (BV/TV) of ROIs in Rod group was 930 % and 452 % higher than CD group after 3 (0.206 ± 0.0095 vs. 0.020 ± 0.0058, p < 0.05, n=3) and 6 (0.232 ± 0.0161 vs. 0.042 ± 0.0061, p < 0.05, n=3) months respectively. By histological evaluation, the BV/TV of ROIs in Rod group was 647 % and 422 % higher than CD group after 3 (0.157 ± 0.0061 vs. 0.021 ± 0.0061, p < 0.05, n=3) and 6 (0.235 ± 0.0145 vs. 0.045 ± 0.0059, p < 0.05, n=3) months respectively. The new bone grew along metal trabeculae into the center of the rod with a rapid bone ingrowth in Rod gorup. Whereas in CD group, new bone grew mainly at the periphery of the decompressive channel with a slow bone ingrowth. Mechanical analysis showed that maximum load on the femoral head-necks was 31 % greater 6 months after Ti-Rod implantation than after CD alone when the vertical press reached the apex (3751.75 ± 391.96 vs. 2858.25 ± 512.91 N, p < 0.05, n=3). The association of rod implantation with fine bone ingrowth, osteointegration, and favorable mechanical properties suggests that implantation of the porous titanium alloy rod with the diamond crystal lattice may be a beneficial intervention for patients with early-stage ONFH.
Collapse
Affiliation(s)
- Cairu Wang
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Da Liu
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Qingyun Xie
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Jinbiao Liu
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Shaolin Deng
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Kai Gong
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Chen Huang
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Li Yin
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Meiming Xie
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Zheng Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Zheng
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| |
Collapse
|
17
|
Mashimo T, Sato Y, Akita D, Toriumi T, Namaki S, Matsuzaki Y, Yonehara Y, Honda M. Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. J Oral Sci 2019; 61:284-293. [DOI: 10.2334/josnusd.18-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Juntendo University Faculty of Medicine
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Yukio Sato
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry
| | - Shunsuke Namaki
- Department of Clinical Medicine, Nihon University School of Dentistry
| | - Yumi Matsuzaki
- Department of Life Science, Shimane University Faculty of Medicine
| | | | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry
| |
Collapse
|
18
|
Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther 2018; 13:45-55. [PMID: 30587927 PMCID: PMC6305133 DOI: 10.2147/dddt.s178698] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Animal studies have demonstrated the therapeutic effect of mesenchymal stem cells (MSCs) on osteogenesis, but little is known about the functions of exosomes (Exos) released by bone MSCs (BMSCs). Here, we investigated the effect of BMSC Exos on steroid-induced femoral head necrosis (SFHN) and explored the vital genes involved in this process. MATERIALS AND METHODS BMSCs were isolated from healthy and SFHN rats. BMSC Exos were isolated using the Exosome Precipitation Kit and characterized by transmission electron microscopy and Western blotting. SFHN BMSCs were incubated with Exos from healthy BMSCs. Osteogenic ability was assessed by oil red O staining and alizarine red staining. Differentially expressed genes (DEGs) induced by Exos were screened using the Osteogenesis RT2 Profiler PCR Array. The effect of upregulated Sox9 was examined using lentivirus-mediated siRNA. RESULTS The results revealed that BMSC Exos were 100-150 nm in size and expressed CD63. Moreover, BMSC Exo-treated SFHN cells exhibited suppressed adipogenesis compared to model cells. PCR array showed that eleven and nine genes were upregulated and downregulated, respectively, in the BMSC Exo-treated SFHN cells compared to the model group. Among the DEGs, osteogenesis-related genes, including Bmp2, Bmp6, Bmpr1b, Mmp9, and Sox9, may play important roles in SFHN. Furthermore, the DEGs were mainly involved in immune response, osteoblast differentiation, and in the transforming growth factor-β/bone morphogenetic protein signaling pathway. The level of the SOX9 protein was upregulated by Exos, and Sox9 silencing significantly decreased the osteogenic effect of BMSC Exos. CONCLUSION Our data suggest that Exos derived from BMSCs mainly affect SFHN osteogenesis, and this finding can be further investigated to develop a novel therapeutic agent for SFHN.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China,
| | - Yongfeng Li
- Department of Bone Surgery, Fujian Medical University, Fuzhou 350005, China
| | - Peng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China,
| |
Collapse
|
19
|
Li R, Lin QX, Liang XZ, Liu GB, Tang H, Wang Y, Lu SB, Peng J. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Res Ther 2018; 9:291. [PMID: 30359305 PMCID: PMC6202807 DOI: 10.1186/s13287-018-1018-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory disease that is associated with collapse of the femoral head, with a risk of hip arthroplasty in younger populations. Thus, there has been an increased focus on early interventions for ONFH that aim to preserve the native articulation. Stem cell therapy is a promising treatment, and an increasing number of recent studies have focused on this topic. Many clinical studies have reported positive outcomes of stem cell therapy for the treatment of ONFH. To improve the therapeutic effects of this approach, many related basic research studies have also been performed. However, some issues must be further explored, such as the appropriate patient selection procedure, the optimal stem cell selection protocol, the ideal injection number, and the safety of stem cell therapy. The purpose of this review is to summarize the available clinical studies and basic research related to stem cell therapy for ONFH.
Collapse
Affiliation(s)
- Rui Li
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qiu-Xia Lin
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xue-Zhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Guang-Bo Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - He Tang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yu Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shi-Bi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
20
|
Li D, Xie X, Yang Z, Wang C, Wei Z, Kang P. Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold. Biomater Sci 2018; 6:519-537. [PMID: 29369309 DOI: 10.1039/c7bm00975e] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common debilitating disease that occurs in young and middle-aged adults. To treat early GIONFH, core decompression and bone graft are regarded as effective measures. However, the ideal bone graft should possess bioactivity as well as biomechanical properties. The most commonly used bone graft materials are currently unsatisfactory. In this study, we fabricated a composited scaffold using lithium (Li) to activate the Wnt signal pathway and erythrogenin (EPO) to upregulate the HIF-1/VEGF pathway to improve the osteogenic and angiogenic effects of the scaffold. We obtained the porous gelatin/nano-lithium-hydroxyapatite/gelatin microsphere/rhEPO (Li-nHA/GMs/rhEPO) composited scaffold and assessed its mechanical properties, release properties, and in vitro bioactivity. Then, we implanted the scaffold into the femoral heads of GIONFH rabbits after core decompression surgery and evaluated the osteogenic and angiogenic abilities of the scaffold in vivo as well as its bone defect repair efficacy. As the results show, the Li-nHA/GM/rhEPO scaffold possessed good mechanical compression strength and enabled continuous release of Li and rhEPO. Moreover, the scaffold improved the viability of glucocorticoid-treated BMMSCs and vascular endothelial cells and increased the expression of osteogenic and angiogenic factors. In the in vivo study, the composited scaffold improved new bone formation and exerted effects on repairing femoral head defects in GIONFH rabbits. Additionally, the osteogenic and angiogenic factors were increased along with the activation of factors in the Wnt signal pathway and the HIF-1/VEGF pathway. In conclusion, the Li-nHA/GM/rhEPO scaffold can upregulate the Wnt and HIF-1/VEGF pathways at same time and has effects on improving osteogenesis and angiogenesis, which benefits the repair of GIONFH.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Zhun W, Donghai L, Zhouyuan Y, Haiyan Z, Pengde K. Efficiency of Cell Therapy to GC-Induced ONFH: BMSCs with Dkk-1 Interference Is Not Superior to Unmodified BMSCs. Stem Cells Int 2018; 2018:1340252. [PMID: 29951100 PMCID: PMC5987233 DOI: 10.1155/2018/1340252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (ONFH) is a hip disorder, and it threatens patients who require megadose of steroid therapies. Nowadays, no valid therapies can reverse the development of GC-induced ONFH once it occurs. Stem cell therapy to GC-induced ONFH would be a promising choice. Although the pathogenesis of GC-induced ONFH is not yet fully clear, Dickkopf-1 (Dkk-1) upregulated by excessive GC use, which hinders the canonical Wnt pathway, could be an explanation. Thus, the aim of the present work lies in investigating the efficiency of the allograft bone marrow stem cells (BMSCs) with Dkk-1 interference in preventing the progression of the GC-induced ONFH. Lentivirus-meditated Dkk-1 RNAi was introduced into BMSCs which was exposed to dexamethasone (10-6 mol/L) in vitro. This interference blocked Dkk-1 overexpression by GC and afterwards prompted the transduction of Wnt/β-catenin in which the Runx2 and PPARγ were upregulated and downregulated, respectively. Thus, the osteogenesis was promoted while adipogenesis was inhibited. In vivo, GC-induced ONFH rats were treated by allotransplantation of BMSCs with Dkk-1 interference, and the progression of the disease was prevented. However, the effects were not significantly superior to treatment with nongenetically modified or normal BMSCs.
Collapse
Affiliation(s)
- Wei Zhun
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Li Donghai
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Yang Zhouyuan
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Zhao Haiyan
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Kang Pengde
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| |
Collapse
|
22
|
Shi L, Sun W, Gao F, Cheng L, Li Z. Heterotopic ossification related to the use of recombinant human BMP-2 in osteonecrosis of femoral head. Medicine (Baltimore) 2017; 96:e7413. [PMID: 28682898 PMCID: PMC5502171 DOI: 10.1097/md.0000000000007413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite the wide use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in bone defect, its application in treating osteonecrosis of femoral head (ONFH) is yet to be elucidated. The heterotopic ossification (HO) after rhBMP-2 usage in some orthopedic surgeries has been reported previously; however, only a few studies describe this complication in the treatment of ONFH.The present study investigated whether the rhBMP-2 application would increase the risk of HO formation in selected ONFH patients with nonvascularized bone grafting surgery and enhance the surgical results of nonvascularized bone grafting as compared to patients who did not receive intraoperative rhBMP-2.A retrospective analysis was performed on 94 patients (141 hips) who, with Association Research Circulation Osseous (ARCO) stages IIb, IIc, and IIIa ONFH, underwent nonvascularized bone grafting surgery. The first 46 patients (66 hips) received intraoperative rhBMP-2. The postoperative radiographic results (X-ray and CT scan) and Harris hip score (HHS) were reviewed in each patient to record the incidence of HO formation and evaluate the clinical efficacy of rhBMP-2, respectively.HO formation frequently occurred in patients receiving intraoperative rhBMP-2 (8/66 hips) than those not receiving the protein (1/75 hips) (P = .02). HHS improved from preoperatively at the final follow-up (P < .01) in the BMP-positive group, with a survival rate of 83.3%. In the BMP-negative group, the HHS improved from preoperatively at the end of the follow-up (P < .01), and the survival rate was 72.0%.rhBMP-2 has osteoinductive property and might serve as an adjuvant therapy in the surgical treatment of ONFH. However, the incidence of HO formation might increase when used in high doses.
Collapse
Affiliation(s)
- Lijun Shi
- Peking University China–Japan Friendship School of Clinical Medicine
| | - Wei Sun
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liming Cheng
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| |
Collapse
|
23
|
PTH[1-34] improves the effects of core decompression in early-stage steroid-associated osteonecrosis model by enhancing bone repair and revascularization. PLoS One 2017; 12:e0178781. [PMID: 28562696 PMCID: PMC5451136 DOI: 10.1371/journal.pone.0178781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Steroid-associated osteonecrosis (SAON) might induce bone collapse and subsequently lead to joint arthroplasty. Core decompression (CD) is regarded as an effective therapy for early-stage SAON, but the prognosis is unsatisfactory due to incomplete bone repair. Parathyroid hormone[1–34] (PTH[1–34]) has demonstrated positive efficacy in promoting bone formation. We therefore evaluated the effects of PTH on improving the effects of CD in Early-Stage SAON. Distal femoral CD was performed two weeks after osteonecrosis induction or vehicle injection, with ten of the ON-induced rabbits being subjected to six-week PTH[1–34] treatment and the others, including ON-induced and non-induced rabbits, being treated with vehicle. MRI confirmed that intermittent PTH administration improved SAON after CD therapy. Micro-CT showed increased bone formation within the tunnel. Bone repair was enhanced with decreased empty osteocyte lacunae and necrosis foci area, resulting in enhanced peak load and stiffness of the tunnel. Additionally, PTH enlarged the mean diameter of vessels in the marrow and increased the number of vessels within the tunnels, as well as elevated the expression of BMP-2, RUNX2, IGF-1, bFGF and VEGF, together with serum OCN and VEGF levels. Therefore, PTH[1–34] enhances the efficacy of CD on osteogenesis and neovascularization, thus promoting bone and blood vessels repair in the SAON model.
Collapse
|
24
|
Gao F, Sun W, Guo W, Wang B, Cheng L, Li Z. Combined with Bone Marrow-Derived Cells and rhBMP-2 for Osteonecrosis after Femoral Neck Fractures in Children and Adolescents: A case series. Sci Rep 2016; 6:30730. [PMID: 27477836 PMCID: PMC4967904 DOI: 10.1038/srep30730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/06/2016] [Indexed: 02/02/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) following femoral neck fractures is a rare, yet severe, disorder in children and adolescents. This study evaluated the effectiveness of core decompression (CD) combined with implantation of bone marrow-derived cells (BMDC) and rhBMP-2 for osteonecrosis of femoral head (ONFH) after femoral neck fractures in children and adolescents. This study included 51 patients, aged 11.4-18.1 years, with ARCO stages I-III ONFH after femoral neck fractures between 2004 and 2010. The hips were divided into two groups based on whether the lateral pillar of the femoral head (LPFH) was preserved: LPFH and non-LPFH groups. All patients were followed up clinically and radiographically for a minimum of 5 years. 44 patients (86.3%) had improved clinical outcome. Radiologically, 9 of the 51 hips (17.6%) exhibited collapse onset or progression of the femoral head or narrowing of the hip joint space, and one patient in the non-LPFH group required hip arthroplasty due to the worsened syndrome. The technique provided an effective therapeutic option for children and adolescents with ONFH following femoral neck fractures. It relieves hip pain and prevents the progression of osteonecrosis in young patients lasting more than 5 years after surgery.
Collapse
Affiliation(s)
- Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| | - Wei Sun
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| | - Wanshou Guo
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| | - Bailiang Wang
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| | - Liming Cheng
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Department of Orthopedics, Beijing Key Laboratory of Arthritic and Rheumatic Diseases, China-Japan Friendship Hospital, National Health and Family Planning Commission of the People’s Republic of China, Beijing 100029, China
| |
Collapse
|
25
|
Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress. Clin Orthop Surg 2016; 8:1-8. [PMID: 26929793 PMCID: PMC4761591 DOI: 10.4055/cios.2016.8.1.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 12/28/2022] Open
Abstract
Avascular necrosis of the femoral head is caused by a multitude of etiologic factors and is associated with collapse with a risk of hip arthroplasty in younger populations. A focus on early disease management with the use of stem cells was proposed as early as 1985 by the senior author (PH). We undertook a systematic review of the medical literature to examine the progress in cell therapy during the last 30 years for the treatment of early stage osteonecrosis.
Collapse
Affiliation(s)
- Philippe Hernigou
- Department of Orthopaedic Surgery, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | - Matthieu Trousselier
- Department of Orthopaedic Surgery, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | - François Roubineau
- Department of Orthopaedic Surgery, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | - Charlie Bouthors
- Department of Orthopaedic Surgery, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | - Nathalie Chevallier
- EFS Cell Therapy Facility, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | - Helene Rouard
- EFS Cell Therapy Facility, University Paris East (UPEC), Hôpital Henri Mondor, Creteil, France
| | | |
Collapse
|
26
|
Potentiated Osteoinductivity via Cotransfection with BMP-2 and VEGF Genes in Microencapsulated C2C12 Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:435253. [PMID: 26451370 PMCID: PMC4588358 DOI: 10.1155/2015/435253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/17/2023]
Abstract
Microcapsules with entrapped cells hold great promise for repairing bone defects. Unfortunately, the osteoinductivity of microcapsules has been restricted by many factors, among which the deficiency of functional proteins is a significant priority. We potentiated the osteoinductivity of microencapsulated cells via cotransfection with BMP-2 and VEGF genes. Various tissue-derived mesenchymal stem cells and cell lines were compared for BMP-2 and VEGF cotransfection. Ethidium bromide (EB)/Calcein AM staining revealed that all of the cell categories could survive for 4 weeks after microencapsulation. An ELISA assay indicated that all microencapsulated BMP-2 or VEGF transfected cells could secrete gene products constitutively for 1 month. Particularly, the recombinant microencapsulated C2C12 cells released the most desirable level of BMP-2 and VEGF. Further experiments demonstrated that microencapsulated BMP-2 and VEGF cotransfected C2C12 cells generated both BMP-2 and VEGF for 4 weeks. Additionally, the cotransfection of BMP-2 and VEGF in microencapsulated C2C12 cells showed a stronger osteogenic induction against BMSCs than individual BMP-2-transfected microencapsulated C2C12 cells. These results demonstrated that the cotransfection of BMP-2 and VEGF into microencapsulated C2C12 cells is of potent utility for the potentiation of bone regeneration, which would provide a promising clinical strategy for cellular therapy in bone defects.
Collapse
|
27
|
Houdek MT, Wyles CC, Sierra RJ. Osteonecrosis of the femoral head: treatment with ancillary growth factors. Curr Rev Musculoskelet Med 2015; 8:233-9. [PMID: 25985987 PMCID: PMC4596200 DOI: 10.1007/s12178-015-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteonecrosis (ON) of the femoral head, also known as avascular necrosis (AVN) of the femoral head, is a progressive disease that predominantly affects younger patients. During early stage of ON, decompression of the femoral head has been commonly used to improve pain. The decompression has been augmented with nonvascularized or vascularized bone grafts, mesenchymal stems cells, and growth factors. The use of adjuvant growth factors to supplement the core decompression has mainly been limited to animal models in an attempt to regenerate the necrotic lesion of ON. Factors utilized include bone morphogenetic proteins, vascular endothelial growth factors, hepatocyte growth factors, fibroblast growth factors, granulocyte colony-stimulating factors, and stem cells factors. In animal models, the use of these factors has been shown to increase bone formation and angiogenesis. Although promising, the use of these growth factors and cell-based therapies clinically remains limited.
Collapse
Affiliation(s)
- Matthew T. Houdek
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Cody C. Wyles
- />Mayo Clinic Medical School, 200 First St. SW, Rochester, MN 55909 USA
| | - Rafael J. Sierra
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
28
|
Amirian J, Linh NTB, Min YK, Lee BT. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int J Biol Macromol 2015; 76:10-24. [DOI: 10.1016/j.ijbiomac.2015.02.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/25/2022]
|
29
|
Cipriani P, Ruscitti P, Di Benedetto P, Carubbi F, Liakouli V, Berardicurti O, Ciccia F, Triolo G, Giacomelli R. Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies. Cytotherapy 2015; 17:832-49. [PMID: 25680301 DOI: 10.1016/j.jcyt.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
In recent years, mesenchymal stromal cells (MSCs) have been largely investigated and tested as a new therapeutic tool for several clinical applications, including the treatment of different rheumatic diseases. MSCs are responsible for the normal turnover and maintenance of adult mesenchymal tissues as the result of their multipotent differentiation abilities and their secretion of a variety of cytokines and growth factors. Although initially derived from bone marrow, MSCs are present in many different tissues such as many peri-articular tissues. MSCs may exert immune-modulatory properties, modulating different immune cells in both in vitro and in vivo models, and they are considered immune-privileged cells. At present, these capacities are considered the most intriguing aspect of their biology, introducing the possibility that these cells may be used as effective therapy in autoimmune diseases. Therefore, stem cell therapies may represent an innovative approach for the treatment of rheumatic diseases, especially for the forms that are not responsive to standard treatments or alternatively still lacking a definite therapy. At present, although the data from scientific literature appear to suggest that such treatments might be more effective whether administered as soon as possible, the use of MSCs in clinical practice is likely to be restricted to patients with a long history of a severe refractory disease. Further results from larger clinical trials are needed to corroborate preclinical findings and human non-controlled studies, and advancement in the knowledge of MSCs might provide information about the therapeutic role of these cells in the treatment of many rheumatic diseases.
Collapse
Affiliation(s)
- Paola Cipriani
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy.
| | - Piero Ruscitti
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Paola Di Benedetto
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Francesco Carubbi
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Vasiliki Liakouli
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Onorina Berardicurti
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Francesco Ciccia
- Rheumatology Unit, Internal Medicine Department, University of Palermo, Palermo, Italy
| | - Giovanni Triolo
- Rheumatology Unit, Internal Medicine Department, University of Palermo, Palermo, Italy
| | - Roberto Giacomelli
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
30
|
Kang P, Xie X, Tan Z, Yang J, Shen B, Zhou Z, Pei F. Repairing defect and preventing collapse of femoral head in a steroid-induced osteonecrotic of femoral head animal model using strontium-doped calcium polyphosphate combined BM-MNCs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:80. [PMID: 25634136 DOI: 10.1007/s10856-015-5402-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 11/09/2014] [Indexed: 02/05/2023]
Abstract
We investigated the synergism between strontium-doped calcium polyphosphate (SCPP) and autologous bone marrow mononuclear cells (BM-MNCs) in treating osteonecrosis of the femoral head (ONFH). ONFH was confirmed histopathologically at 2 weeks after methylprednisolone acetate injection and the rabbits were treated with morselized autogenous cancellous compacted bone graft (group I), SCPP combined with BM-MNCs (group II), and calcium polyphosphate (group III), respectively. The amount of newly formed bone in group II increased dramatically by 4, 8, and 12 weeks and much more than that in group III (P<0.05). VEGF expression in group I was significantly higher than in group II (P=0.023), and its expression in group II was significantly higher than in group III (P=0.017). At 12 weeks, group II had articular cartilage collapse and group III had joint-space narrowing. The mean histological and radiological scores for repaired defects in group II were significantly higher than those in group III (P=0.000) but lower than those in group I (P=0.000). The implantation of a combination of SCPP and BM-MNCs enhances VEGF expression and promotes osteogenesis, which may improve angiogenesis and allow incorporation and remodeling into new trabecular bone without mechanical weakening.
Collapse
Affiliation(s)
- Pengde Kang
- Orthopaedic Department, West China Hospital, Sichuan University, Chengdu, 610041, China,
| | | | | | | | | | | | | |
Collapse
|
31
|
Xie XH, Wang XL, Yang HL, Zhao DW, Qin L. Steroid-associated osteonecrosis: Epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat 2015; 3:58-70. [PMID: 30035041 PMCID: PMC5982361 DOI: 10.1016/j.jot.2014.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/30/2014] [Accepted: 12/23/2014] [Indexed: 02/08/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a common orthopaedic problem caused by administration of corticosteroids prescribed for many nonorthopaedic medical conditions. We summarised different pathophysiologies of SAON which have adverse effects on multiple systems such as bone marrow stem cells (BMSCs) pool, bone matrix, cell apoptosis, lipid metabolism, and angiogenesis. Different animal models were introduced to mimic the pathophysiology of SAON and for testing the efficacy of both prevention and treatment effects of various chemical drugs, biological, and physical therapies. According to the classification of SAON, several prevention and treatment methods are applied at the different stages of SAON. For the current period, Chinese herbs may also have the potential to prevent the occurrence of SAON. In the future, genetic analysis might also be helpful to effectively predict the development of ON and provide information for personalised prevention and treatment of patients with SAON.
Collapse
Affiliation(s)
- Xin-Hui Xie
- The Department of Orthopedics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,The Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-Luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Translational Medicine Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui-Lin Yang
- The Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Wei Zhao
- Department of Orthopedics, Zhongshan Hospital of Dalian University, Dalian, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Translational Medicine Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
32
|
Gasbarra E, Perrone FL, Baldi J, Bilotta V, Moretti A, Tarantino U. Conservative surgery for the treatment of osteonecrosis of the femoral head: current options. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2015; 12:43-50. [PMID: 27134632 PMCID: PMC4832404 DOI: 10.11138/ccmbm/2015.12.3s.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prevention of femoral head collapse and the maintenance of hip function would represent a substantial achievement in the treatment of osteonecrosis of the femoral head; however it is difficult to identify appropriate treatment protocols to manage patients with pre-collapse avascular necrosis in order to obtain a successful outcome in joint preserving procedures. Conservative treatments, including pharmacological management and biophysical modalities, are not supported by any evidence and require further investigation. The appropriate therapeutic approach has not been identified. The choice of surgical procedures is based on patient clinical conditions and anatomopathological features; preservation of the femoral head by core decompression may be attempted in younger patients without head collapse. Biological factors, such as bone morphogenetic proteins and bone marrow stem cells, would improve the outcome of core decompression. Another surgical procedure proposed for the treatment of avascular necrosis consists of large vascularized cortical bone grafts, but its use is not yet common due to surgical technical issues. Use of other surgical technique, such as osteotomies, is controversial, since arthroplasty is considered as the first option in case of severe femoral head collapse without previous intervention.
Collapse
Affiliation(s)
- Elena Gasbarra
- Department of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy
- Address for correspondence: Elena Gasbarra, MD, Department of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy, E-mail:
| | - Fabio Luigi Perrone
- Graduate School of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Jacopo Baldi
- Graduate School of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Vincenzo Bilotta
- Graduate School of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, Second University of Naples, Naples, Italy
| | - Umbertto Tarantino
- Department of Orthopaedics and Traumatology, University of Rome Tor Vergata, “Policlinico Tor Vergata” Foundation, Rome, Italy
| |
Collapse
|
33
|
Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D, Dhar M. Graphene supportsin vitroproliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 2014; 35:367-74. [DOI: 10.1002/jat.3024] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Hoda Elkhenany
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| | - Lisa Amelse
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| | - Andersen Lafont
- The Center for Integrative Nanotechnology Sciences; University of Arkansas; Little Rock AR 72204-1099 USA
| | - Shawn Bourdo
- The Center for Integrative Nanotechnology Sciences; University of Arkansas; Little Rock AR 72204-1099 USA
| | - Marc Caldwell
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| | - Nancy Neilsen
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| | - Enkeleda Dervishi
- The Center for Integrative Nanotechnology Sciences; University of Arkansas; Little Rock AR 72204-1099 USA
| | - Oshin Derek
- The Center for Integrative Nanotechnology Sciences; University of Arkansas; Little Rock AR 72204-1099 USA
| | - Alexandru S. Biris
- The Center for Integrative Nanotechnology Sciences; University of Arkansas; Little Rock AR 72204-1099 USA
| | - David Anderson
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences; University of Tennessee; Knoxville TN 37996 USA
| |
Collapse
|
34
|
Shi DA, Sun Y, Yin J, Fan X, Duan H, Liu N, He W. Cajan leaf combined with bone marrow-derived mesenchymal stem cells for the treatment of osteonecrosis of the femoral head. Exp Ther Med 2014; 7:1471-1475. [PMID: 24926328 PMCID: PMC4043602 DOI: 10.3892/etm.2014.1622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/09/2014] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to observe the curative effect of traditional Chinese cajan leaves, combined with administration of bone marrow-derived mesenchymal stem cells (BMSCs), on osteonecrosis of the femoral head (ONFH) in rats and to investigate the underlying mechanisms. A total of 40 rat ONFH models were established through liquid nitrogen freezing and were subsequently divided into groups: A, control; B, treated with cajan leaf; C, treated with BMSCs and D, treated with cajan leaf combined with BMSCs. Samples were obtained 30 days following treatment, and immunohistochemical staining of vascular endothelial growth factor (VEGF) and image analysis were performed. Chondrocytes and vascular endothelial cells were stained as a result of immunohistochemical staining and group D exhibited markedly deeper staining, and a significantly larger number of stained cells, compared with group A. Thus, in the present study, cajan leaf combined with BMSCs was shown to promote VEGF expression and improve ONFH repair.
Collapse
Affiliation(s)
- DA Shi
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yindi Sun
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jichao Yin
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaochen Fan
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Honghao Duan
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Na Liu
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Wei He
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
35
|
Luo Q, Lu WW, Lau TW, Leung F. Development of an animal fracture model for evaluation of cement augmentation femoroplasty: an in vitro biomechanical study. Biores Open Access 2014; 3:70-4. [PMID: 24804167 PMCID: PMC3994908 DOI: 10.1089/biores.2013.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteoporotic hip fracture is the most severe kind of fracture with high morbidity and mortality. Patients' ambulation and quality of life are significantly affected by the fracture because only 50% regain their prefracture functional status, even if they undergo surgeries. There are many issues associated with the current preventive methods e.g., cost, side effects, patient compliance, and time for onset of action. Femoroplasty, the injection of bone cement into the proximal femur to augment femoral strength and to prevent fracture, has been an option with great potential. However, until now femoroplasty has remained at the stage of biomechanical testing. No in vivo study has evaluated its safety and effectiveness; there is not even an animal model for such investigations. The objective of this study was to develop a proximal femur fracture goat model that consistently fractures at the proximal femur when subject to vertical load, simulating osteoporotic hip fractures in human. Six pairs of fresh frozen mature Chinese goats' femora were obtained and randomly assigned into two groups. For the experimental group, a cylindrical bone defect was created at the proximal femur, while the control was left untreated. In addition, a configuration to mimic the mechanical axis of the goat femur was developed. When subjected to load along the mechanical axis, all the specimens from the bone defect group experienced femoral neck fractures, while fractures occurred at the femoral neck or other sites of the proximal femur in the control group. The biomechanical property (failure load) of the bone defect specimens was significantly lower than that of the control specimens (p<0.05). Osteoporotic hip fractures of humans were simulated by a goat fracture model, which may serve as a reference for future femoroplasty studies in vivo. The newly developed configuration simulating a femoral mechanical axis for biomechanical tests was practicable during the study.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China
| | - Tak-Wing Lau
- Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China . ; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital , Shenzhen, China
| |
Collapse
|
36
|
Calloni R, Viegas GS, Türck P, Bonatto D, Pegas Henriques JA. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 2013; 16:3-16. [PMID: 24113426 DOI: 10.1016/j.jcyt.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Collapse
Affiliation(s)
- Raquel Calloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Gabrihel Stumpf Viegas
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Patrick Türck
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - João Antonio Pegas Henriques
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| |
Collapse
|
37
|
Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells. Spine (Phila Pa 1976) 2013; 38:E1300-6. [PMID: 23873227 DOI: 10.1097/brs.0b013e3182a3cbb3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A rabbit laminectomy model was used to evaluate the efficacy of artificial laminae of vertebral arch using bone marrow-derived mesenchymal stem cells (MSCs) transplanted in porous beta-calcium phosphates (β-TCP) bioceramics. OBJECTIVE The aim of this study was to establish artificial lamina of the vertebral arch for bone tissue engineering using β-TCP bioceramics seeded with MSCs in a rabbit model of decompressive laminectomy. SUMMARY OF BACKGROUND DATA Decompressive laminectomy may induce various degrees of scar tissue and adhesion formation in the epidural space, and thus is the most common cause of failed back surgery syndrome. However, there is no effective method of bone defect treatment to control and reduce the scar tissue formation. METHODS MSCs were harvested from New Zealand rabbits (2-week old) by femoral bone marrow extraction. These cells were seeded into porous β-TCP bioceramics and cultivated for up to 3 weeks in the presence of osteogenic supplements. Segmental defects (20 × 8 mm) were created in 48 adult New Zealand rabbits that underwent laminectomy at the L5 to L6 levels. The animals were transplanted with cell media (control), β-TCP bioceramics (group I), or MSC-loaded β-TCP bioceramics (group II). Bone formation was evaluated after operation using scanning electron microscopy, computed tomography, magnetic resonance imaging, histomorphometry, and immunohistochemistry. RESULTS Scanning electron microscopy showed that MSCs filled the pores and surfaces of bioceramics in MSC-loaded β-TCP. In addition, significant increases in bone formation were observed in group II compared with other groups. Computed tomography and magnetic resonance imaging at 16 weeks showed that the artificial lamina of the vertebral arch was successfully formed. Hematoxylin-eosin and Masson trichrome staining were used to show the artificial laminae of the vertebral arch and the degraded bioceramics. In addition, immunohistochemistry results showed that the expression of bone morphogenetic protein-2 increased significantly in group II compared with group I at 2,4, and 8 weeks after implantation (P < 0.05). CONCLUSION β-TCP bioceramics seeded with MSCs are a promising source of tissue-engineered bone for the artificial lamina of the vertebral arch.
Collapse
|
38
|
Ding H, Gao YS, Hu C, Wang Y, Wang CG, Yin JM, Sun Y, Zhang CQ. HIF-1α transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS One 2013; 8:e63628. [PMID: 23675495 PMCID: PMC3652809 DOI: 10.1371/journal.pone.0063628] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/04/2013] [Indexed: 02/01/2023] Open
Abstract
Although corticosteroid-induced osteonecrosis of the femoral head (ONFH) is common, the treatment for it remains limited and largely ineffective. We examined whether implantation of hypoxia inducible factor-1α (HIF-1α) transgenic bone marrow cells (BMCs) can promote the repair of the necrotic area of corticosteroid-induced ONFH. In this study, we confirmed that HIF-1α gene transfection could enhance mRNA expression of osteogenic genes in BMCs in vitro. Alkaline phosphatase activity assay and alizarin red-S staining indicated HIF-1α transgenic BMCs had enhanced osteogenic differentiation capacity in vitro. Furthermore, enzyme linked immunosorbent assay (ELISA) for VEGF revealed HIF-1α transgenic BMCs secreted more VEGF as compared to normal BMCs. An experimental rabbit model of early-stage corticosteroid-induced ONFH was established and used for an evaluation of cytotherapy. Transplantation of HIF-1α transgenic BMCs dramatically improved the bone regeneration of the necrotic area of the femoral head. The number and volume of blood vessel were significantly increased in the necrotic area of the femoral head compared to the control groups. These results support HIF-1α transgenic BMCs have enhanced osteogenic and angiogenic activity in vitro and in vivo. Transplantation of HIF-1α transgenic BMCs can potentially promote the repair of the necrotic area of corticosteroid-induced ONFH.
Collapse
Affiliation(s)
- Hao Ding
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Hu
- Shanghai Key Laboratory of Regulatory Biology, School of life Sciences, East China Normal University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan-Gui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of life Sciences, East China Normal University, Shanghai, China
| | - Ji-Min Yin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Qutachi O, Shakesheff KM, Buttery LD. Delivery of definable number of drug or growth factor loaded poly(dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. J Control Release 2013; 168:18-27. [DOI: 10.1016/j.jconrel.2013.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
40
|
Im GI. Nonviral gene transfer strategies to promote bone regeneration. J Biomed Mater Res A 2013; 101:3009-18. [PMID: 23554051 DOI: 10.1002/jbm.a.34576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Korea
| |
Collapse
|
41
|
Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. J Tissue Eng Regen Med 2012; 9:961-72. [DOI: 10.1002/term.1679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 10/14/2012] [Accepted: 11/10/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Xin-Hui Xie
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Department of Orthopaedics; First Affiliated Hospital of Soochow University; Suzhou People's Republic of China
| | - Xin-Luan Wang
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Translational Medicine Research and Development Centre, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen People's Republic of China
| | - Ge Zhang
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
| | - Yi-Xin He
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
| | - Yang Leng
- Department of Mechanical Engineering; Hong Kong University of Science and Technology; People's Republic of China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai People's Republic of China
| | - Xiaohua Pan
- Department of Orthopaedics, Shenzhen People's Hospital, Second Clinical Medical College; Ji'nan University; Shenzhen China
| | - Ling Qin
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Translational Medicine Research and Development Centre, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen People's Republic of China
| |
Collapse
|
42
|
Li Z, Liao W, Zhao Q, Liu M, Xia W, Yang Y, Shao N. Angiogenesis and bone regeneration by allogeneic mesenchymal stem cell intravenous transplantation in rabbit model of avascular necrotic femoral head. J Surg Res 2012; 183:193-203. [PMID: 23290592 DOI: 10.1016/j.jss.2012.11.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 02/06/2023]
Abstract
AIM To explore the feasibility of allogeneic mesenchymal stem cells (MSCs) transplanted intravenously for angiogenesis and bone repair in a rabbit model of avascular necrosis of femoral head (ANFH). MATERIALS AND METHODS Forty-five rabbits were randomized into three groups: a blank control group (without treatment), a necrotic control group (ANFH induced but without therapy), and an MSC transplantation group (ANFH induced and treated with MSC transplantation). The biopsies, blood sampling, and imaging examinations were performed on each animal at different time points (2, 4, and 6 wk). To monitor angiogenesis and bone repair progress, examinations included real-time polymerase chain reaction, Western blot analysis, x-ray, computed tomography, Masson trichrome staining, picrosirius red staining, and immunohistochemical staining. RESULTS Necrosis and bone collapse were observed in bilateral femoral heads of necrotic rabbits of the necrotic control group, whereas the femoral head morphology was generally restored in the MSC transplantation group. The mRNA levels of Cbfa1, BMP, VEGF, and OPN in bone tissue were significantly higher in the MSC transplantation group than in the necrotic control group. In addition, the total protein amount of Cbfa1 in the MSC transplantation group was also significantly higher than that in the necrotic control group (P < 0.05). CONCLUSION Intravenous transplantation of allogeneic MSCs can promote vascular and bone regeneration in the necrotic region of the femoral head in a rabbit model of ANFH. The results of our study suggest that the intravenous transplantation of MSCs could be a potential and minimally invasive treatment option for ANFH patients.
Collapse
Affiliation(s)
- Zhanghua Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med 2012; 14:13-24. [DOI: 10.1007/s10238-012-0218-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023]
|
44
|
Treatment of femoral head osteonecrosis with advanced cell therapy in sheep. Arch Orthop Trauma Surg 2012; 132:1611-8. [PMID: 22821379 DOI: 10.1007/s00402-012-1584-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Indexed: 02/09/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the efficacy of core decompression associated with advanced cell therapy for the treatment of femoral head osteonecrosis in an established sheep model. METHODS Early stage osteonecrosis of the right hip was induced cryogenically in 15 mature sheep. At 6 weeks, the sheep were divided into three groups, Group A: core decompression only; Group B: core decompression followed by implantation of an acellular bone matrix scaffold; Group C: core decompression followed by implantation of a cultured BMSC loaded bone matrix scaffold. At 12 weeks, MRI hip studies were performed and then the proximal femur was harvested for histological analysis. RESULTS In the group of advanced cell therapy, Group C, there was a tendency to higher values of the relative surface of newly formed bone with a mean of 20.3 versus 11.27 % in Group A and 13.04 % in Group B but it was not statistically significant. However, the mean relative volume of immature osteoid was 8.6 % in Group A, 14.97 in Group B, and 53.49 % in Group C (p < 0.05), revealing a greater capacity of osteoid production in the sheep treated with BMSCs. MRI findings were not conclusive due to constant bone edema artifact in all cases. CONCLUSIONS Our findings indicate that a BMCSs loaded bone matrix scaffold is capable of stimulating bone regeneration more effectively than isolated core decompression or in association with an acellular scaffold in a preclinical femoral head osteonecrosis model in sheep.
Collapse
|
45
|
Abstract
Gene delivery to bone is useful both as an experimental tool and as a potential therapeutic strategy. Among its advantages over protein delivery are the potential for directed, sustained and regulated expression of authentically processed, nascent proteins. Although no clinical trials have been initiated, there is a substantial pre-clinical literature documenting the successful transfer of genes to bone, and their intraosseous expression. Recombinant vectors derived from adenovirus, retrovirus and lentivirus, as well as non-viral vectors, have been used for this purpose. Both ex vivo and in vivo strategies, including gene-activated matrices, have been explored. Ex vivo delivery has often employed mesenchymal stem cells (MSCs), partly because of their ability to differentiate into osteoblasts. MSCs also have the potential to home to bone after systemic administration, which could serve as a useful way to deliver transgenes in a disseminated fashion for the treatment of diseases affecting the whole skeleton, such as osteoporosis or osteogenesis imperfecta. Local delivery of osteogenic transgenes, particularly those encoding bone morphogenetic proteins, has shown great promise in a number of applications where it is necessary to regenerate bone. These include healing large segmental defects in long bones and the cranium, as well as spinal fusion and treating avascular necrosis.
Collapse
Affiliation(s)
- C H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
46
|
Xie XH, Wang XL, He YX, Liu Z, Sheng H, Zhang G, Qin L. Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. ACTA ACUST UNITED AC 2012; 64:1562-71. [PMID: 22544527 DOI: 10.1002/art.34525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Cytotherapy is an insufficient method for promoting bone repair in steroid-associated osteonecrosis (SAON), and this has been attributed to impairment of the bioactivity of bone marrow-derived stem cells (BMSCs) after pulsed administration of steroids. Cryopreserved autologous bone marrow-derived mononuclear cells (BMMNCs), which contain BMSCs, might maintain their bioactivity in vitro. This study sought to investigate the effects of cryopreserved BMMNCs, before steroid administration, on the enhancement of bone repair in an established rabbit model of SAON. METHODS For in vitro study, bone marrow was harvested 4 weeks before SAON induction from the iliac crests of rabbits (n = 10) to isolate fresh BMMNCs, and the BMMNCs were then cryopreserved for 8 weeks. Both the fresh and the cryopreserved BMMNCs were evaluated for their bioactivity and osteogenic differentiation capacity. In addition, BMMNCs were isolated 2 weeks after SAON induction and subjected to the same evaluations. For in vivo study, cryopreserved BMMNCs were implanted into the bone tunnel during core decompression of the femur (n = 12 rabbits) after the induction of SAON, and tissue regeneration was evaluated by micro-computed tomography and histologic analyses at 12 weeks postoperation. RESULTS In vitro, there were no significant differences in the bioactivity or ability to undergo osteogenic differentiation between fresh BMMNCs and cryopreserved BMMNCs, but after SAON induction, both features were decreased significantly. In vivo, the bone mineral density, ratio of bone volume to total volume of bone, and volume and diameter of neovascularization within the bone tunnel were significantly higher in the BMMNC-treated group compared to the nontreated control group at 12 weeks postoperation. CONCLUSION Cryopreserved BMMNCs maintained their bioactivity and promoted bone regeneration and neovascularization within the bone tunnel after core decompression in this rabbit model of SAON.
Collapse
Affiliation(s)
- Xin-Hui Xie
- The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Erken HY, Ofluoglu O, Aktas M, Topal C, Yildiz M. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken. INTERNATIONAL ORTHOPAEDICS 2012; 36:1523-8. [PMID: 22331126 PMCID: PMC3385903 DOI: 10.1007/s00264-012-1497-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/14/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Pentoxifylline (PTX) is a derivative of methylxanthine and is used in peripheral vascular and cerebrovascular diseases for its effect on the regulation of blood circulation. We investigated whether PTX could be beneficial for femoral head osteonecrosis associated with steroid through these effects. METHODS Sixty mature Leghorn type chickens were chosen and divided into three groups. The 25 chickens in group A were given a weekly dose of 3 mg/kg/week methylprednisolone acetate intramuscularly. Four chickens in group B died after the first drug injection and were excluded from the study. Therefore, the remaining 21 chickens in group B were additionally given 25 mg/kg/day pentoxifylline intramuscularly, along with the steroid medication as given in group A. The ten chickens in group C were not given any injections, as they were accepted as the control group. After the sacrifice of the animals at week 14, both femoral heads were taken from each animal. The animals which died along the course of the study also underwent pathological examination but were not a part of the statistical analysis. RESULTS In this study, steroid induced femoral head osteonecrosis has been experimentally observed in chickens after high doses of corticosteroid therapy. The chickens were given pentoxifylline in order to prevent the effects of steroid on bones and bone marrow. The results showed that chickens are suitable osteonecrosis models, and that steroid causes adipogenesis and necrosis in the bone marrow and the death of the subchondral bone. CONCLUSIONS The results of this study hint at the assumption that PTX may have a positive benefit on ONFH. PTX seems to minimise the effects of the steroid and reduce the incidence of ONFH.
Collapse
Affiliation(s)
- H Yener Erken
- Orthopaedics and Traumatology, Anadolu Medical Center, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW, Wall I. Administration of growth factors for bone regeneration. Regen Med 2012; 7:369-85. [DOI: 10.2217/rme.12.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Growth factors (GFs) such as BMPs, FGFs, VEGFs and IGFs have significant impacts on osteoblast behavior, and thus have been widely utilized for bone tissue regeneration. Recently, securing biological stability for a sustainable and controllable release to the target tissue has been a challenge to practical applications. This challenge has been addressed to some degree with the development of appropriate carrier materials and delivery systems. This review highlights the importance and roles of those GFs, as well as their proper administration for targeting bone regeneration. Additionally, the in vitro and in vivo performance of those GFs with or without the use of carrier systems in the repair and regeneration of bone tissue is systematically addressed. Moreover, some recent advances in the utility of the GFs, such as using fusion technology, are also reviewed.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
| | - Jun Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Eunyi Jeon
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Wonmo Kang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Jong-Eun Won
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
| | - Hae Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Korea
| | - Ivan Wall
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
49
|
Steinert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 2012; 1:237-47. [PMID: 23197783 PMCID: PMC3659848 DOI: 10.5966/sctm.2011-0036] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022] Open
Abstract
Regenerative therapies in the musculoskeletal system are based on the suitable application of cells, biomaterials, and/or factors. For an effective approach, numerous aspects have to be taken into consideration, including age, disease, target tissue, and several environmental factors. Significant research efforts have been undertaken in the last decade to develop specific cell-based therapies, and in particular adult multipotent mesenchymal stem cells hold great promise for such regenerative strategies. Clinical translation of such therapies, however, remains a work in progress. In the clinical arena, autologous cells have been harvested, processed, and readministered according to protocols distinct for the target application. As outlined in this review, such applications range from simple single-step approaches, such as direct injection of unprocessed or concentrated blood or bone marrow aspirates, to fabrication of engineered constructs by seeding of natural or synthetic scaffolds with cells, which were released from autologous tissues and propagated under good manufacturing practice conditions (for example, autologous chondrocyte implantation). However, only relatively few of these cell-based approaches have entered the clinic, and none of these treatments has become a "standard of care" treatment for an orthopaedic disease to date. The multifaceted reasons for the current status from the medical, research, and regulatory perspectives are discussed here. In summary, this review presents the scientific background, current state, and implications of clinical mesenchymal stem cell application in the musculoskeletal system and provides perspectives for future developments.
Collapse
Affiliation(s)
- Andre F. Steinert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Würzburg, Germany
| | - Lars Rackwitz
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Würzburg, Germany
| | - Fabian Gilbert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Würzburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Würzburg, Germany
| | - Rocky S. Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
50
|
Rackwitz L, Eden L, Reppenhagen S, Reichert JC, Jakob F, Walles H, Pullig O, Tuan RS, Rudert M, Nöth U. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Res Ther 2012; 3:7. [PMID: 22356811 PMCID: PMC3340551 DOI: 10.1186/scrt98] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN.
Collapse
Affiliation(s)
- Lars Rackwitz
- Orthopaedic Center for Musculoskeletal Research, Department of Orthopaedic Surgery König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|