1
|
Hamasaki M, Terkawi MA, Onodera T, Tian Y, Ebata T, Matsumae G, Alhasan H, Takahashi D, Iwasaki N. Transcriptional profiling of murine macrophages stimulated with cartilage fragments revealed a strategy for treatment of progressive osteoarthritis. Sci Rep 2020; 10:7558. [PMID: 32371954 PMCID: PMC7200748 DOI: 10.1038/s41598-020-64515-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that synovitis is associated with osteoarthritic process. Macrophages play principal role in development of synovitis. Our earlier study suggests that interaction between cartilage fragments and macrophages exacerbates osteoarthritic process. However, molecular mechanisms by which cartilage fragments trigger cellular responses remain to be investigated. Therefore, the current study aims at analyzing molecular response of macrophages to cartilage fragments. To this end, we analyzed the transcriptional profiling of murine macrophages exposed to cartilage fragments by RNA sequencing. A total 153 genes were differentially upregulated, and 105 genes were down-regulated in response to cartilage fragments. Bioinformatic analysis revealed that the most significantly enriched terms of the upregulated genes included scavenger receptor activity, integrin binding activity, TNF signaling, and toll-like receptor signaling. To further confirm our results, immunohistochemical staining was performed to detected regulated molecules in synovial tissues of OA patients. In consistence with RNA-seq results, MARCO, TLR2 and ITGα5 were mainly detected in the intima lining layer of synovial tissues. Moreover, blockade of TLR2 or ITGα5 but not Marco using specific antibody significantly reduced production of TNF-α in stimulated macrophages by cartilage fragments. Our data suggested that blocking TLR2 or ITGα5 might be promising therapeutic strategy for treating progressive osteoarthritis.
Collapse
Affiliation(s)
- Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Bei M, Tian F, Liu N, Zheng Z, Cao X, Zhang H, Wang Y, Xiao Y, Dai M, Zhang L. A Novel Rat Model of Patellofemoral Osteoarthritis Due to Patella Baja, or Low-Lying Patella. Med Sci Monit 2019; 25:2702-2717. [PMID: 30979862 PMCID: PMC6476235 DOI: 10.12659/msm.915018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Patella baja, or patella infera, consists of a low-lying patella that results in a limited range of motion, joint pain, and crepitations. Patellofemoral joint osteoarthritis (PFJOA) is a subtype OA of the knee. This study aimed to develop a reproducible and reliable rat model of PFJOA. Material/Methods Three-month-old female Sprague-Dawley rats (n=24) included a baseline group (n=8) that were euthanized at the beginning of the study. The sham group (n=8), and the patella ligament shortening (PLS) group (n=8) were euthanized and evaluated at ten weeks. The PLS model group (n=8) underwent insertion of a Kirschner wire under the patella tendon to induce patella baja. At ten weeks, the sham group and the PLS group were compared using X-ray imaging, macroscopic appearance, histology, immunohistochemistry, TUNEL staining for apoptosis, and micro-computed tomography (micro-CT). The patella height was determined using the modified Insall-Salvati (MIS) ratio. Results The establishment of the rat model of patella baja in the PLS group at ten weeks was confirmed by X-ray. In the PLS group, patella volume, sagittal length, and cross-sectional area were significantly increased compared with the sham group. The PFJ showed typical lesions of OA, confirmed macroscopically and histologically. Compared with the sham group, in the rat model of PFJOA, there was increased cell apoptosis, and immunohistochemistry showed increased expression of biomarkers of osteoarthritis, compared with the sham group. Conclusions A rat model of PFJOA was developed that was confirmed by changes in cartilage and subchondral bone.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Faming Tian
- Meical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Ning Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Zhiyuan Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Xuehui Cao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Hongfei Zhang
- Meical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yudan Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yaping Xiao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Muwei Dai
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Orthopedic Surgery, Meitan General Hospital, Beijing, China (mainland)
| |
Collapse
|
3
|
Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One 2018; 13:e0196625. [PMID: 29698461 PMCID: PMC5919651 DOI: 10.1371/journal.pone.0196625] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the histopathological changes in the patellofemoral joint using a rat model of osteoarthritis that was induced using monosodium iodoacetate, and to establish a novel model of patellofemoral osteoarthritis in a rat model using histopathological analysis. Sixty male rats were used. Osteoarthritis was induced through a single intra-articular injection of monosodium iodoacetate in both knee joints. Animals were equally divided into two experimental groups based on the monosodium iodoacetate dose: 0.2 mg and 1.0 mg. Histopathological changes in the articular cartilage of the patellofemoral joint and the infrapatellar fat pad were examined at 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the monosodium iodoacetate injection. In the 1.0-mg group, the representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint over time. Additionally, the Osteoarthritis Research Society International scores of the patellofemoral joint increased over time. The synovitis scores of the infrapatellar fat pad in both groups were highest at 3 days, and then the values decreased over time. The fibrosis score of the infrapatellar fat pad in the 1.0-mg group increased with time, whereas the fibrosis score in the 0.2-mg group remained low. Representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint in a rat model of osteoarthritis induced using monosodium iodoacetate. With appropriate selection, this model may be regarded as an ideal patellofemoral osteoarthritis model.
Collapse
|
4
|
Tsai HC, Chen TL, Chen YP, Chen RM. Traumatic osteoarthritis-induced persistent mechanical hyperalgesia in a rat model of anterior cruciate ligament transection plus a medial meniscectomy. J Pain Res 2017; 11:41-50. [PMID: 29317848 PMCID: PMC5743113 DOI: 10.2147/jpr.s154038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage degeneration, subchondral bone changes, osteophyte formation, and synovitis. A major symptom is pain that is triggered by peripheral and central changes within the pain pathways. Some surgery-induced joint instability rat models of OA were described to mimic traumatic OA. Several behavioral tests were developed to access OA-induced pain. However, follow-up in most studies usually only occurred for about 4 weeks. Since traumatic OA is a chronic disease which gradually develops after trauma, the pattern of pain might differ between early and late stages after the trauma. Purpose To observe the time-dependent development of hypersensitivity after traumatic OA and to determine the best timing and methods to investigate traumatic OA-induced pain. Methods Anterior cruciate ligament transection plus medial meniscectomy was used to induce traumatic OA in Sprague-Dawley rats. Traumatic OA-induced pain was evaluated using four different behavioral tests for 15 weeks. Results A significant difference in mechanical hypersensitivity developed throughout the observational period. It was worst in the first 3 weeks after the operation, then became less significant after 5 weeks but persisted. There were no differences in thermal hyperalgesia or motor coordination. Conclusion Traumatic OA induced mechanical hyperalgesia but did not cause thermal hyperalgesia or influence motor coordination. Furthermore, to investigate chronic pain induced by OA, the observational period should be at least 5 weeks after the intervention. These findings may help in further research and improve our understanding of traumatic OA-induced pain mechanisms.
Collapse
Affiliation(s)
- Hsiao-Chien Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Liang Chen
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Philp AM, Davis ET, Jones SW. Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatology (Oxford) 2017; 56:869-881. [PMID: 27498352 DOI: 10.1093/rheumatology/kew278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/30/2022] Open
Abstract
OA is the most common joint disorder in the world, but there are no approved therapeutics to prevent disease progression. Historically, OA has been considered a wear-and-tear joint disease, and efforts to identify and develop disease-modifying therapeutics have predominantly focused on direct inhibition of cartilage degeneration. However, there is now increasing evidence that inflammation is a key mediator of OA joint pathology, and also that the link between obesity and OA is not solely due to excessive load-bearing, suggesting therefore that targeting inflammation in OA could be a rewarding therapeutic strategy. In this review we therefore re-evaluate historical clinical trial data on anti-inflammatory therapeutics in OA patients, highlight some of the more promising emerging therapeutic targets and discuss the implications for future clinical trial design.
Collapse
Affiliation(s)
- Ashleigh M Philp
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| | - Edward T Davis
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| |
Collapse
|
6
|
Legrand CB, Lambert CJ, Comblain FV, Sanchez C, Henrotin YE. Review of Soluble Biomarkers of Osteoarthritis: Lessons From Animal Models. Cartilage 2017; 8:211-233. [PMID: 28618869 PMCID: PMC5625856 DOI: 10.1177/1947603516656739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective Osteoarthritis (OA) is one of the leading causes of disability within the adult population. Currently, its diagnosis is mainly based on clinical examination and standard radiography. To date, there is no way to detect the disease at a molecular level, before the appearance of structural changes and symptoms. So an attractive alternative for monitoring OA is the measurement of biochemical markers in blood, urine, or synovial fluid, which could reflect metabolic changes in joint tissue and therefore disease onset and progression. Animal models are relevant to investigate the early stage of OA and metabolic changes occurring in joint tissues. The goal of this narrative review is to summarize the scientific data available in the literature on soluble biomarkers in animal models of OA. Design A literature search was conducted using the PubMed/Medline and Scopus databases between February 1995 and December 2015. All original articles, systematic and narrative reviews published in French or in English were considered. Results We summarized the data of 69 studies and proposed a classification scheme for OA biomarkers in animal studies, largely inspired by the BIPEDS classification. Conclusions Studies about biomarkers and animal models indicate that some markers could be valuable to monitor OA progression and assess therapeutic response in some animal models.
Collapse
Affiliation(s)
- Catherine B. Legrand
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Cécile J. Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Fanny V. Comblain
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Yves E. Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
7
|
Abstract
Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model.
Collapse
Affiliation(s)
- A M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
8
|
Takaishi R, Aoyama T, Zhang X, Higuchi S, Yamada S, Takakuwa T. Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture. Osteoarthritis Cartilage 2014; 22:1401-9. [PMID: 25278051 DOI: 10.1016/j.joca.2014.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions. METHODS Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software. RESULTS Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed. CONCLUSION Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint.
Collapse
Affiliation(s)
- R Takaishi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - T Aoyama
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - X Zhang
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - S Higuchi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - S Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - T Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|