1
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Wang M, Li Y, Feng L, Zhang X, Wang H, Zhang N, Viohl I, Li G. Pulsed Electromagnetic Field Enhances Healing of a Meniscal Tear and Mitigates Posttraumatic Osteoarthritis in a Rat Model. Am J Sports Med 2022; 50:2722-2732. [PMID: 35834942 DOI: 10.1177/03635465221105874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal tears in the avascular region are thought to rarely heal and are a considerable challenge to treat. Although the therapeutic effects of a pulsed electromagnetic field (PEMF) have been extensively studied in a variety of orthopaedic disorders, the effect of a PEMF on meniscal healing has not been reported. HYPOTHESIS PEMF treatment would promote meniscal healing and prevent osteoarthritis progression. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 twelve-week-old male Sprague-Dawley rats with full-thickness longitudinal medial meniscal tears in the avascular region were divided into 3 groups: control (Gcon), treatment with a classic signal PEMF (Gclassic), and treatment with a high-slew rate signal PEMF (GHSR). Macroscopic observation and histological analysis of the meniscus and articular cartilage were performed to evaluate the meniscal healing and progression of osteoarthritis. The synovium was harvested for histological and immunofluorescent analysis to evaluate the intra-articular inflammation. Meniscal healing, articular cartilage degeneration, and synovitis were quantitatively evaluated according to their scoring systems. RESULTS Dramatic degenerative changes of the meniscus and articular cartilage were noticed during gross observation and histological evaluation in Gcon at 8 weeks. However, the menisci in the 2 treatment groups were restored to normal morphology, with a smooth surface and shiny white color. Particularly, the HSR signal remarkably enhanced the fibrochondrogenesis and accelerated the remodeling process of the regenerated tissue. The meniscal healing scores of the PEMF treatment groups were significantly higher than those in Gcon at 8 weeks. Specifically, the HSR signal showed a significantly higher meniscal repair score than did the classic signal at week 8 (P < .01). Additionally, the HSR signal significantly downregulated the secretion levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the meniscus and synovium as compared with the control group. When compared with the 2 treatment groups, Gcon had significantly higher degeneration scores (Gcon vs Gclassic, P < .0001; Gcon vs GHSR, P < .0001). The HSR signal also exhibited significantly lower synovitis scores compared with the other two groups (Gcon vs Gclassic, P < .0001; Gclassic vs GHSR, P = .0002). CONCLUSION A PEMF promoted the healing of meniscal tears in the avascular region and restored the injured meniscus to its structural integrity in a rat model. As compared with the classic signal, the HSR signal showed increased capability to promote fibrocartilaginous tissue formation and modulate the inflammatory environment, therefore protecting the knee joint from posttraumatic osteoarthritis development. CLINICAL RELEVANCE Adjuvant PEMF therapy may offer a new approach for the treatment of meniscal tears attributed to the enhanced meniscal repair and ameliorated osteoarthritis progression.
Collapse
Affiliation(s)
- Ming Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yucong Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Nianli Zhang
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Ingmar Viohl
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
3
|
Nicksic PJ, Donnelly DT, Verma N, Setiz AJ, Shoffstall AJ, Ludwig KA, Dingle AM, Poore SO. Electrical Stimulation of Acute Fractures: A Narrative Review of Stimulation Protocols and Device Specifications. Front Bioeng Biotechnol 2022; 10:879187. [PMID: 35721861 PMCID: PMC9201474 DOI: 10.3389/fbioe.2022.879187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic fractures have a significant impact on patients in the form of economic loss and functional impairment. Beyond the standard methods of reduction and fixation, one adjunct that has been explored since the late 1970s is electrical stimulation. Despite robust evidence for efficacy in the preclinical arena, human trials have mixed results, and this technology is not widely accepted. The purpose of this review is to examine the body of literature supporting electrical stimulation for the purpose of fracture healing in humans with an emphasis on device specifications and stimulation protocols and delineate a minimum reporting checklist for future studies of this type. We have isolated 12 studies that pertain to the administration of electrical stimulation for the purpose of augmenting fracture healing in humans. Of these, one was a direct current electrical stimulation study. Six studies utilized pulsed electromagnetic field therapy and five used capacitive coupling. When examining these studies, the device specifications were heterogenous and often incomplete in what they reported, which rendered studies unrepeatable. The stimulation protocols also varied greatly study to study. To demonstrate efficacy of electrical stimulation for fractures, the authors recommend isolating a fracture type that is prone to nonunion to maximize the electrical stimulation effect, a homogenous study population so as to not dilute the effect of electrical stimulation, and increasing scientific rigor in the form of pre-registration, blinding, and sham controls. Finally, we introduce the critical components of minimum device specification reporting for repeatability of studies of this type.
Collapse
Affiliation(s)
- Peter J. Nicksic
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - D’Andrea T. Donnelly
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin—Madison, Madison, WI, United States
| | - Allison J. Setiz
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin—Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin—Madison, Madison, WI, United States
| | - Aaron M. Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Samuel O. Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- *Correspondence: Samuel O. Poore,
| |
Collapse
|
4
|
Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage. BIOLOGY 2022; 11:biology11030402. [PMID: 35336776 PMCID: PMC8945722 DOI: 10.3390/biology11030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Pulsed electromagnetic fields (PEMFs) are a type of biophysical stimulation that has been shown to be effective in improving bone regeneration and preventing bone loss. Their use dates back to the 1970s, but a gold standard treatment protocol has not yet been defined. PEMF efficacy relies on the generation of biopotentials, which activate several molecular pathways. There is currently no clear understanding of the effects on bone healing and, in addition, there are several animal models relevant to this issue. Therefore, drawing guidelines and conclusions from the analysis of the studies is difficult. In vivo investigations on PEMF stimulation are reviewed in this paper, focusing on molecular and morphological improvements in bone. Currently, there is little knowledge about the biological mechanism of PEMF and its effect on bone healing. This is due to the variability of crucial characteristics of electro-magnetic fields, such as amplitude and exposure frequency, which may influence the type of biological response. Furthermore, a different responsiveness of cells involved in the bone healing process is documented. Heterogeneous setting parameters and different outcome measures are considered in various animal models. Therefore, achieving comparable results is difficult. Abstract Biophysical energies are a versatile tool to stimulate tissues by generating biopotentials. In particular, pulsed electromagnetic field (PEMF) stimulation has intrigued researchers since the 1970s. To date, many investigations have been carried out in vivo, but a gold standard treatment protocol has not yet been defined. The main obstacles are represented by the complex setting of PEMF characteristics, the variety of animal models (including direct and indirect bone damage) and the lack of a complete understanding of the molecular pathways involved. In the present review the main studies about PEMF stimulation in animal models with bone impairment were reviewed. PEMF signal characteristics were investigated, as well as their effect on molecular pathways and osseous morphological features. We believe that this review might be a useful starting point for a prospective study in a clinical setting. Consistent evidence from the literature suggests a potential beneficial role of PEMF in clinical practice. Nevertheless, the wide variability of selected parameters (frequency, duration, and amplitude) and the heterogeneity of applied protocols make it difficult to draw certain conclusions about PEMF effectiveness in clinical implementation to promote bone healing. Deepening the knowledge regarding the most consistent results reported in literature to date, we believe that this review may be a useful starting point to propose standardized experimental guidelines. This might provide a solid base for further controlled trials, to investigate PEMF efficacy in bone damage conditions during routine clinical practice.
Collapse
|
5
|
Caliogna L, Medetti M, Bina V, Brancato AM, Castelli A, Jannelli E, Ivone A, Gastaldi G, Annunziata S, Mosconi M, Pasta G. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications. Int J Mol Sci 2021; 22:ijms22147403. [PMID: 34299021 PMCID: PMC8303968 DOI: 10.3390/ijms22147403] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
In this article, we provide an extensive review of the recent literature of the signaling pathways modulated by Pulsed Electromagnetic Fields (PEMFs) and PEMFs clinical application. A review of the literature was performed on two medical electronic databases (PubMed and Embase) from 3 to 5 March 2021. Three authors performed the evaluation of the studies and the data extraction. All studies for this review were selected following these inclusion criteria: studies written in English, studies available in full text and studies published in peer-reviewed journal. Molecular biology, identifying cell membrane receptors and pathways involved in bone healing, and studying PEMFs target of action are giving a solid basis for clinical applications of PEMFs. However, further biology studies and clinical trials with clear and standardized parameters (intensity, frequency, dose, duration, type of coil) are required to clarify the precise dose-response relationship and to understand the real applications in clinical practice of PEMFs.
Collapse
Affiliation(s)
- Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Marta Medetti
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Alberto Castelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Alessandro Ivone
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| |
Collapse
|
6
|
Dutta SD, Bin J, Ganguly K, Patel DK, Lim KT. Electromagnetic field-assisted cell-laden 3D printed poloxamer-407 hydrogel for enhanced osteogenesis. RSC Adv 2021; 11:20342-20354. [PMID: 35479929 PMCID: PMC9033958 DOI: 10.1039/d1ra01143j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
3D bioprinted hydrogel has gained enormous attention, especially in tissue engineering, owing to its attractive structure and excellent biocompatibility. In this study, we demonstrated that 3D bioprinted cell-laden 'thermoresponsive' poloxamer-407 (P407) gels have the potential to stimulate osteogenic differentiation of apical papilla stem cells (SCAPs) under the influence of low voltage-frequency (5 V-1 Hz, 0.62 mT) electromagnetic fields (EMFs). SCAPs were initially used for cell-laden 3D printing to biomimic the apical papilla of human teeth. The developed hydrogel exhibited higher mechanical strength as well as good printability, showing high-quality micro-architecture. Moreover, the as-printed hydrogels (5 mm × 5 mm) were loaded with plasminogen activator inhibitor-1 (PAI-1) for testing the combined effect of PAI-1 and EMFs on SCAP differentiation. Interestingly, the 3D hydrogels showed improved viability and differentiation of SCAPs under EMFs' influence as examined by live/dead assay and alizarin Red-S staining, respectively. Therefore, our results confirmed that P407 hydrogels are non-toxic for encapsulation of SCAPs, yielding high cell viability and accelerate the cell migration potential. The 3D hydrogels with PAI-1 exhibited high mRNA expression levels for osteogenic/odontogenic gene markers (ALP, Col-1, DSPP, and DMP-1) vis-à-vis control after 14 days of in vitro culture. Our findings suggest that 3D bioprinted P407 hydrogels are biocompatible for SCAP encapsulation, and the applied low voltage-frequency EMFs could effectively improve dental tissue regeneration, particularly for oral applications.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University Chuncheon-24341 Republic of Korea
| | - Jin Bin
- School of Stomatology, Affiliated Hospital of Yanbian University Yanji-136200 Beijing China
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University Chuncheon-24341 Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University Chuncheon-24341 Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University Chuncheon-24341 Republic of Korea
- Biomechagen Co., Ltd Chuncheon-24341 Republic of Korea
| |
Collapse
|
7
|
Peng L, Fu C, Xiong F, Zhang Q, Liang Z, Chen L, He C, Wei Q. Effectiveness of Pulsed Electromagnetic Fields on Bone Healing: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bioelectromagnetics 2020; 41:323-337. [PMID: 32495506 DOI: 10.1002/bem.22271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/08/2020] [Accepted: 05/10/2020] [Indexed: 02/05/2023]
Abstract
The effect of pulsed electromagnetic field (PEMF) on bone healing is still uncertain and it has not been established as a standardized treatment. The aim of this systematic review and meta-analysis is to evaluate the effect of PEMF on bone healing in patients with fracture. We searched CNKI, Wan Fang, VIP, EMbase, PubMed, CENTRAL, Web of Science, Physiotherapy Evidence Database, and Open Grey websites for randomized controlled trials (published before July 2019 in English or Chinese) comparing any form of PEMF to sham. Reference lists were also searched. Related data were extracted by two investigators independently. The bias risk of the articles and the evidence strength of the outcomes were evaluated. Twenty-two studies were eligible and included in our analysis (n = 1,468 participants). The pooled results of 14 studies (n = 1,131 participants) demonstrated that healing rate in PEMF group was 79.7% (443/556), and that in the control group was 64.3% (370/575). PEMF increased healing rate (RR = 1.22; 95% confidence interval [CI] = 1.10-1.35; I2 = 48%) by the Mantel-Haenszel analysis, relieved pain (standardized mean difference (SMD) = -0.49; 95% CI = -0.88 to -0.10; I2 = 60%) by the inverse variance analysis, and accelerated healing time (SMD = -1.01; 95% CI = -2.01 to -0.00; I2 = 90%) by the inverse variance analysis. Moderate quality evidence suggested that PEMF increased healing rate and relieved pain of fracture, and very low-quality evidence showed that PEMF accelerated healing time. Larger and higher quality randomized controlled trials and pre-clinical studies of optimal frequency, amplitude, and duration parameters are needed. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lihong Peng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Zejun Liang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| |
Collapse
|
8
|
Niikura T, Iwakura T, Omori T, Lee SY, Sakai Y, Akisue T, Oe K, Fukui T, Matsushita T, Matsumoto T, Kuroda R. Topical cutaneous application of carbon dioxide via a hydrogel for improved fracture repair: results of phase I clinical safety trial. BMC Musculoskelet Disord 2019; 20:563. [PMID: 31766994 PMCID: PMC6878668 DOI: 10.1186/s12891-019-2911-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background Clinicians have very limited options to improve fracture repair. Therefore, it is critical to develop a new clinically available therapeutic option to assist fracture repair biologically. We previously reported that the topical cutaneous application of carbon dioxide (CO2) via a CO2 absorption-enhancing hydrogel accelerates fracture repair in rats by increasing blood flow and angiogenesis and promoting endochondral ossification. The aim of this study was to assess the safety and efficacy of CO2 therapy in patients with fractures. Methods Patients with fractures of the femur and tibia were prospectively enrolled into this study with ethical approval and informed consent. The CO2 absorption-enhancing hydrogel was applied to the fractured lower limbs of patients, and then 100% CO2 was administered daily into a sealed space for 20 min over 4 weeks postoperatively. Safety was assessed based on vital signs, blood parameters, adverse events, and arterial and expired gas analyses. As the efficacy outcome, blood flow at the level of the fracture site and at a site 5 cm from the fracture in the affected limb was measured using a laser Doppler blood flow meter. Results Nineteen patients were subjected to complete analysis. No adverse events were observed. Arterial and expired gas analyses revealed no adverse systemic effects including hypercapnia. The mean ratio of blood flow 20 min after CO2 therapy compared with the pre-treatment level increased by approximately 2-fold in a time-dependent manner. Conclusions The findings of the present study revealed that CO2 therapy is safe to apply to human patients and that it can enhance blood flow in the fractured limbs. Trial registration This study has been registered in the UMIN Clinical Trials Registry (Registration number: UMIN000013641, Date of registration: July 1, 2014).
Collapse
|
9
|
Ehnert S, Schröter S, Aspera-Werz RH, Eisler W, Falldorf K, Ronniger M, Nussler AK. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J Clin Med 2019; 8:jcm8122028. [PMID: 31756999 PMCID: PMC6947624 DOI: 10.3390/jcm8122028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The finding that alterations in electrical potential play an important role in the mechanical stimulation of the bone provoked hype that noninvasive extremely low frequency pulsed electromagnetic fields (ELF-PEMF) can be used to support healing of bone and osteochondral defects. This resulted in the development of many ELF-PEMF devices for clinical use. Due to the resulting diversity of the ELF-PEMF characteristics regarding treatment regimen, and reported results, exposure to ELF-PEMFs is generally not among the guidelines to treat bone and osteochondral defects. Notwithstanding, here we show that there is strong evidence for ELF-PEMF treatment. We give a short, confined overview of in vitro studies investigating effects of ELF-PEMF treatment on bone cells, highlighting likely mechanisms. Subsequently, we summarize prospective and blinded studies, investigating the effect of ELF-PEMF treatment on acute bone fractures and bone fracture non-unions, osteotomies, spinal fusion, osteoporosis, and osteoarthritis. Although these studies favor the use of ELF-PEMF treatment, they likewise demonstrate the need for more defined and better controlled/monitored treatment modalities. However, to establish indication-oriented treatment regimen, profound knowledge of the underlying mechanisms in the sense of cellular pathways/events triggered is required, highlighting the need for more systematic studies to unravel optimal treatment conditions.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
- Correspondence: or ; Tel.: +49-7071-606-1067
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Wiebke Eisler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Karsten Falldorf
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Michael Ronniger
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| |
Collapse
|
10
|
Ziegler P, Nussler AK, Wilbrand B, Falldorf K, Springer F, Fentz AK, Eschenburg G, Ziegler A, Stöckle U, Maurer E, Ateschrang A, Schröter S, Ehnert S. Pulsed Electromagnetic Field Therapy Improves Osseous Consolidation after High Tibial Osteotomy in Elderly Patients-A Randomized, Placebo-Controlled, Double-Blind Trial. J Clin Med 2019; 8:jcm8112008. [PMID: 31744243 PMCID: PMC6912342 DOI: 10.3390/jcm8112008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022] Open
Abstract
Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) therapy is proposed to support bone healing after injuries and surgical procedures, being of special interest for elderly patients. This study aimed at investigating the effect of a specific ELF-PEMF, recently identified to support osteoblast function in vitro, on bone healing after high tibial osteotomy (HTO). Patients who underwent HTO were randomized to ELF-PEMF or placebo treatment, both applied by optically identical external devices 7 min per day for 30 days following surgery. Osseous consolidation was evaluated by post-surgical X-rays (7 and 14 weeks). Serum markers were quantified by ELISA. Data were compared by a two-sided t-test (α = 0.05). Device readouts showed excellent therapy compliance. Baseline parameters, including age, sex, body mass index, wedge height and blood cell count, were comparable between both groups. X-rays revealed faster osseous consolidation for ELF-PEMF compared to placebo treatment, which was significant in patients ≥50 years (∆mean = 0.68%/week; p = 0.003). Findings are supported by post-surgically increased bone-specific alkaline phosphatase serum levels following ELF-PEMF, compared to placebo (∆mean = 2.2 µg/L; p = 0.029) treatment. Adverse device effects were not reported. ELF-PEMF treatment showed a tendency to accelerate osseous consolidation after HTO. This effect was stronger and more significant for patients ≥50 years. This ELF-PEMF treatment might represent a promising adjunct to conventional therapy supporting osseous consolidation in elderly patients. Level of Evidence: I.
Collapse
Affiliation(s)
- Patrick Ziegler
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
- Correspondence: ; Tel.: +49-7071-606-1065
| | - Benjamin Wilbrand
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (A.-K.F.); (G.E.)
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany;
| | - Anne-Kristin Fentz
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (A.-K.F.); (G.E.)
| | - Georg Eschenburg
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (A.-K.F.); (G.E.)
| | - Andreas Ziegler
- StatSol Lübeck, Moenring 2, D-23560 Lübeck, Germany;
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, Scottsville 3209, South Africa
| | - Ulrich Stöckle
- Center for Musculoskeletal Surgery, Charité—University Medicine Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany;
| | - Elke Maurer
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| | - Atesch Ateschrang
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (P.Z.); (B.W.); (E.M.); (A.A.); (S.S.); (S.E.)
| |
Collapse
|
11
|
Konchugova TV, Kulchitskaya DB, Ivanov AV. [Efficiency of magnetic therapy techniques in the treatment and rehabilitation of patients with joint diseases from the standpoint of evidence-based medicine]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2019; 96:63-68. [PMID: 31513170 DOI: 10.17116/kurort20199604163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article provides information on currently proven effective treatment methods for patients with joint diseases, by using magnetic fields with various physical characteristics. A wide range of biotropic parameters allows obtaining various primary physicochemical changes in biological tissues, which was a rationale for including magnetic therapy (MT) in the combination treatment of degenerative-dystrophic and inflammatory diseases. Analysis of scientific publications suggests that there are a large number of randomized, placebo-controlled studies providing evidence for reduced pain, improved joint functional activity and quality of life in patients with knee osteoarthritis under magnetic fields with varying inductions, frequencies, and exposures. There are few randomized clinical trials identifying the efficiency of MT for a number of other joint diseases and after arthroplasty. Despite the fact that there are differences in methodological approaches, it is possible to draw a general conclusion on the scientific validity of using MT in the complex treatment and rehabilitation programs for patients with joint diseases and on the prospects of further developments in this area.
Collapse
Affiliation(s)
- T V Konchugova
- National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - D B Kulchitskaya
- National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia, Moscow, Russia
| | - A V Ivanov
- AO Elatma Instrumental-Making Plant, Elatma, Kasimov District, Ryazan Region, Russia
| |
Collapse
|
12
|
Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? Eur J Trauma Emerg Surg 2019; 46:245-264. [PMID: 30955053 DOI: 10.1007/s00068-019-01127-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment. METHODS To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients. RESULTS Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results. CONCLUSION Despite their awareness of EStim's pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients.
Collapse
|
13
|
Tu C, Xiao Y, Ma Y, Wu H, Song M. The legacy effects of electromagnetic fields on bone marrow mesenchymal stem cell self-renewal and multiple differentiation potential. Stem Cell Res Ther 2018; 9:215. [PMID: 30092831 PMCID: PMC6085613 DOI: 10.1186/s13287-018-0955-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background The effects of electromagnetic fields (EMF) on bone nonunion have been reported for many years. Many studies and randomized controlled trials have demonstrated that EMF exhibited benefits in curing delayed union and nonunion of long bone fractures. Most of them focused on the immediate effects, while the legacy effects of EMF remain poorly investigated. Methods In this study, rat bone marrow mesenchymal stem cells (BMSCs) were treated with EMF, and after a period of time the BMSC proliferation and differentiation were detected. Additionally, BMSC sheets with or without EMF treatment were transplanted into the rat tibia fracture nonunion models. The bone formation was evaluated after 2, 4, and 6 weeks. Results Our results showed that the proliferation capacity of BMSCs was heightened after EMF pretreatment. Over a period of time of EMF pretreatment, the capacities of osteogenic and chondrogenic differentiation were enhanced, while adipogenic differentiation was weakened. BMSC sheets pretreated with EMF could better promote the healing of tibia fracture in rats, compared to BMSC sheets alone. Furthermore, significantly higher values of radiographic grading scores were observed in the EMF group. Conclusions EMF has lasting effects on the proliferation and differentiation of BMSCs, and together with cell sheet technology can provide a new method for the treatment of fracture nonunion.
Collapse
Affiliation(s)
- Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Mingyu Song
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Seger EW, Jauregui JJ, Horton SA, Davalos G, Kuehn E, Stracher MA. Low-Intensity Pulsed Ultrasound for Nonoperative Treatment of Scaphoid Nonunions: A Meta-Analysis. Hand (N Y) 2018; 13:275-280. [PMID: 28391752 PMCID: PMC5987977 DOI: 10.1177/1558944717702470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Scaphoid fractures progress to nonunion rates of up to 15% when non-displaced, and are even more frequent when the fracture is displaced. Standard treatment in these cases is surgery; however, individuals unable to undergo this operation, or for those who wish to try more conservative measures, there may be benefit from nonoperative options. Of these, low-intensity pulsed ultrasound (LIPUS) has been shown to improve fracture nonunion healing. The purpose of this study was to perform a comprehensive meta-analysis of relevant literature to determine success of the use of LIPUS for treatment of scaphoid nonunion. Methods: Utilizing PubMed, Embase, and Ovid databases, we performed a literature search using key terms for scaphoid nonunions. A total of 686 studies met initial search criteria. Studies reporting fewer than 5 cases, those not published in English, those not related to LIPUS nonoperative scaphoid nonunion treatment, and those without sufficient data were excluded. Five studies met these criteria, and statistical analysis was performed to determine overall union rates. Results: The use of LIPUS on 166 nonunions reported a mean healing index of 78.6%. The average time to union following LIPUS treatment was 4.2 months. Conclusions: While surgical intervention is still the standard, our results show that LIPUS may serve as a nonoperative alternative to scaphoid nonunion in certain cases. The results are encouraging in which these challenging fracture a nonunions can heal without further surgical intervention in the majority of patients.
Collapse
Affiliation(s)
| | - Julio J. Jauregui
- University of Maryland Medical Center, Baltimore, USA,University of Maryland School of Medicine, Baltimore, USA,Julio J. Jauregui, Department of Orthopedics, University of Maryland School of Medicine, 110 S. Paca Street, 6th Floor, Suite 300, Baltimore, MD 21201, USA.
| | - Steven A. Horton
- University of Maryland Medical Center, Baltimore, USA,University of Maryland School of Medicine, Baltimore, USA
| | | | - Erika Kuehn
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | |
Collapse
|
15
|
Khalifeh JM, Zohny Z, MacEwan M, Stephen M, Johnston W, Gamble P, Zeng Y, Yan Y, Ray WZ. Electrical Stimulation and Bone Healing: A Review of Current Technology and Clinical Applications. IEEE Rev Biomed Eng 2018; 11:217-232. [PMID: 29994564 DOI: 10.1109/rbme.2018.2799189] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pseudarthrosis is an exceedingly common, costly, and morbid complication in the treatment of long bone fractures and after spinal fusion surgery. Electrical bone growth stimulation (EBGS) presents a unique approach to accelerate healing and promote fusion success rates. Over the past three decades, increased experience and widespread use of EBGS devices has led to significant improvements in stimulation paradigms and clinical outcomes. In this paper, we comprehensively review the literature and examine the history, scientific evidence, available technology, and clinical applications for EBGS. We summarize indications, limitations, and provide an overview of cost-effectiveness and future directions of EBGS technology. Various models of electrical stimulation have been proposed and marketed as adjuncts for spinal fusions and long bone fractures. Clinical studies show variable safety and efficacy of EBGS under different conditions and clinical scenarios. While the results of clinical trials do not support indiscriminate EBGS utilization for any bone injury, the evidence does suggest that EBGS is desirable and cost efficient for certain orthopedic indications, especially when used in combination with standard, first-line treatments. This review should serve as a reference to inform practicing clinicians of available treatment options, facilitate evidence-based decision making, and provide a platform for further research.
Collapse
|
16
|
Bagheri L, Pellati A, Rizzo P, Aquila G, Massari L, De Mattei M, Ongaro A. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med 2017; 12:304-315. [PMID: 28482141 DOI: 10.1002/term.2455] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/26/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Pulsed electromagnetic fields (PEMFs) have been used to treat bone diseases, particularly nonunion healing. Although it is known that PEMFs promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs), to date PEMF molecular mechanisms remain not clearly elucidated. The Notch signalling is a highly conserved pathway that regulates cell fate decisions and skeletal development. The aim of this study was to investigate if the known PEMF-induced osteogenic effects may involve the modulation of the Notch pathway. To this purpose, during in vitro osteogenic differentiation of bone marrow hMSCs in the absence and in the presence of PEMFs, osteogenic markers (alkaline phosphatase activity, osteocalcin and matrix mineralization), the messenger ribonucleic acid expression of osteogenic transcription factors (Runx2, Dlx5, Osterix) as well as of Notch receptors (Notch1-4), their ligands (Jagged1, Dll1 and Dll4) and nuclear target genes (Hes1, Hes5, Hey1, Hey2) were investigated. PEMFs stimulated all osteogenic markers and increased the expression of Notch4, Dll4, Hey1, Hes1 and Hes5 in osteogenic medium compared to control. In the presence of DAPT and SAHM1, used as Notch pathway inhibitors, the expression of the osteogenic markers, including Runx2, Dlx5, Osterix, as well as Hes1 and Hes5 were significantly inhibited, both in unexposed and PEMF-exposed hMSCs. These results suggest that activation of Notch pathway is required for PEMFs-stimulated osteogenic differentiation. These new findings may be useful to improve autologous cell-based regeneration of bone defects in orthopaedics.
Collapse
Affiliation(s)
- Leila Bagheri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Leo Massari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Schandelmaier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RAC, Agoritsas T, Guyatt GH, Vandvik PO, Couban R, Mollon B, Busse JW. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ 2017; 356:j656. [PMID: 28348110 PMCID: PMC5484179 DOI: 10.1136/bmj.j656] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 11/16/2022]
Abstract
Objective To determine the efficacy of low intensity pulsed ultrasound (LIPUS) for healing of fracture or osteotomy.Design Systematic review and meta-analysis.Data sources Medline, Embase, CINAHL, Cochrane Central Register of Controlled Trials, and trial registries up to November 2016.Study selection Randomized controlled trials of LIPUS compared with sham device or no device in patients with any kind of fracture or osteotomy.Review methods Two independent reviewers identified studies, extracted data, and assessed risk of bias. A parallel guideline committee (BMJ Rapid Recommendation) provided input on the design and interpretation of the systematic review, including selection of outcomes important to patients. The GRADE system was used to assess the quality of evidence.Results 26 randomized controlled trials with a median sample size of 30 (range 8-501) were included. The most trustworthy evidence came from four trials at low risk of bias that included patients with tibia or clavicle fractures. Compared with control, LIPUS did not reduce time to return to work (percentage difference: 2.7% later with LIPUS, 95% confidence interval 7.7% earlier to 14.3% later; moderate certainty) or the number of subsequent operations (risk ratio 0.80, 95% confidence interval 0.55 to 1.16; moderate certainty). For pain, days to weight bearing, and radiographic healing, effects varied substantially among studies. For all three outcomes, trials at low risk of bias failed to show a benefit with LIPUS, while trials at high risk of bias suggested a benefit (interaction P<0.001). When only trials at low risk of bias trials were considered, LIPUS did not reduce days to weight bearing (4.8% later, 4.0% earlier to 14.4% later; high certainty), pain at four to six weeks (mean difference on 0-100 visual analogue scale: 0.93 lower, 2.51 lower to 0.64 higher; high certainty), and days to radiographic healing (1.7% earlier, 11.2% earlier to 8.8% later; moderate certainty).Conclusions Based on moderate to high quality evidence from studies in patients with fresh fracture, LIPUS does not improve outcomes important to patients and probably has no effect on radiographic bone healing. The applicability to other types of fracture or osteotomy is open to debate.Systematic review registration PROSPERO CRD42016050965.
Collapse
Affiliation(s)
- Stefan Schandelmaier
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Spitalstrasse 12, CH-4031 Basel, Switzerland
| | - Alka Kaushal
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lyubov Lytvyn
- Oslo University Hospital, Forskningsveien 2b, Postboks 1089, Blindern 0317 Oslo, Norway
| | - Diane Heels-Ansdell
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
| | - Reed A C Siemieniuk
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Thomas Agoritsas
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Division General Internal Medicine and Division of Clinical Epidemiology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, CH-1211, Geneva, Switzerland
| | - Gordon H Guyatt
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
| | - Per O Vandvik
- Institute of Health and Society, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Medicine, Innlandet Hospital Trust-division, Gjøvik, Norway
| | - Rachel Couban
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brent Mollon
- Orillia Soldiers' Memorial Hospital, 41 Frederick Street, Orillia, ON L3V 5W6, Canada
| | - Jason W Busse
- Department of Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4L8, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
18
|
Efficacy of Electrical Stimulators for Bone Healing: A Meta-Analysis of Randomized Sham-Controlled Trials. Sci Rep 2016; 6:31724. [PMID: 27539550 PMCID: PMC4990885 DOI: 10.1038/srep31724] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Electrical stimulation is a common adjunct used to promote bone healing; its efficacy, however, remains uncertain. We conducted a meta-analysis of randomized sham-controlled trials to establish the efficacy of electrical stimulation for bone healing. We identified all trials randomizing patients to electrical or sham stimulation for bone healing. Outcomes were pain relief, functional improvement, and radiographic nonunion. Two reviewers assessed eligibility and risk of bias, performed data extraction, and rated the quality of the evidence. Fifteen trials met our inclusion criteria. Moderate quality evidence from 4 trials found that stimulation produced a significant improvement in pain (mean difference (MD) on 100-millimeter visual analogue scale = -7.7 mm; 95% CI -13.92 to -1.43; p = 0.02). Two trials found no difference in functional outcome (MD = -0.88; 95% CI -6.63 to 4.87; p = 0.76). Moderate quality evidence from 15 trials found that stimulation reduced radiographic nonunion rates by 35% (95% CI 19% to 47%; number needed to treat = 7; p < 0.01). Patients treated with electrical stimulation as an adjunct for bone healing have less pain and are at reduced risk for radiographic nonunion; functional outcome data are limited and requires increased focus in future trials.
Collapse
|
19
|
Hannemann PFW, Essers BAB, Schots JPM, Dullaert K, Poeze M, Brink PRG. Functional outcome and cost-effectiveness of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a cost-utility analysis. BMC Musculoskelet Disord 2015; 16:84. [PMID: 25880388 PMCID: PMC4397944 DOI: 10.1186/s12891-015-0541-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 03/27/2015] [Indexed: 11/17/2022] Open
Abstract
Background Physical forces have been widely used to stimulate bone growth in fracture repair. Addition of bone growth stimulation to the conservative treatment regime is more costly than standard health care. However, it might lead to cost-savings due to a reduction of the total amount of working days lost. This economic evaluation was performed to assess the cost-effectiveness of Pulsed Electromagnetic Fields (PEMF) compared to standard health care in the treatment of acute scaphoid fractures. Methods An economic evaluation was carried out from a societal perspective, alongside a double-blind, randomized, placebo-controlled, multicenter trial involving five centres in the Netherlands. One hundred and two patients with a clinically and radiographically proven fracture of the scaphoid were included in the study and randomly allocated to either active bone growth stimulation or standard health care, using a placebo. All costs (medical costs and costs due to productivity loss) were measured during one year follow up. Functional outcome and general health related quality of life were assessed by the EuroQol-5D and PRWHE (patient rated wrist and hand evaluation) questionnaires. Utility scores were derived from the EuroQol-5D. Results The average total number of working days lost was lower in the active PEMF group (9.82 days) compared to the placebo group (12.91 days) (p = 0.651). Total medical costs of the intervention group (€1594) were significantly higher compared to the standard health care (€875). The total amount of mean QALY’s (quality-adjusted life year) for the active PEMF group was 0.84 and 0.85 for the control group. The cost-effectiveness plane shows that the majority of all cost-effectiveness ratios fall into the quadrant where PEMF is not only less effective in terms of QALY’s but also more costly. Conclusion This study demonstrates that the desired effects in terms of cost-effectiveness are not met. When comparing the effects of PEMF to standard health care in terms of QALY’s, PEMF cannot be considered a cost-effective treatment for acute fractures of the scaphoid bone. Trial registration Netherlands Trial Register (NTR): NTR2064
Collapse
Affiliation(s)
- Pascal F W Hannemann
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Brigitte A B Essers
- Department of Clinical Epidemiology & Medical Technology Assessement (CEMTA), Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Judith P M Schots
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Koen Dullaert
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Martijn Poeze
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Peter R G Brink
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Hannemann PFW, van Wezenbeek MR, Kolkman KA, Twiss ELL, Berghmans CHJ, Dirven PAMGM, Brink PRG, Poeze M. CT scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a randomised, multicentre, double-blind, placebo-controlled trial. Bone Joint J 2014; 96-B:1070-6. [PMID: 25086123 DOI: 10.1302/0301-620x.96b8.33767] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We hypothesised that the use of pulsed electromagnetic field (PEMF) bone growth stimulation in acute scaphoid fractures would significantly shorten the time to union and reduce the number of nonunions in a randomised, double-blind, placebo-controlled multicentre trial. A total of 102 patients (78 male, 24 female; mean age 35 years (18 to 77)) from five different medical centres with a unilateral undisplaced acute scaphoid fracture were randomly allocated to PEMF (n = 51) or placebo (n = 51) and assessed with regard to functional and radiological outcomes (multiplanar reconstructed CT scans) at 6, 9, 12, 24 and 52 weeks. The overall time to clinical and radiological healing did not differ significantly between the active PEMF group and the placebo group. We concluded that the addition of PEMF bone growth stimulation to the conservative treatment of acute scaphoid fractures does not accelerate bone healing.
Collapse
Affiliation(s)
- P F W Hannemann
- Maastricht University Medical Centre, Department of Surgery and Trauma Surgery, PO Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - M R van Wezenbeek
- Maastricht University Medical Centre, Department of Surgery and Trauma Surgery, PO Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - K A Kolkman
- Rijnstate Hospital Arnhem, Department of Surgery, PO Box 9555, 6800 TA Arnhem, the Netherlands
| | - E L L Twiss
- Canisius Wilhelmina Hospital, Department of Surgery, PO Box 9015, 6500 GS Nijmegen, the Netherlands
| | - C H J Berghmans
- Isala Clinics, Department of Surgery, PO Box 10400, 8000 GK Zwolle, the Netherlands
| | - P A M G M Dirven
- Maasziekenhuis Pantein Hospital, Department of Surgery, PO Box 55, 5830 AB Boxmeer, the Netherlands
| | - P R G Brink
- Maastricht University Medical Centre, Department of Surgery and Trauma Surgery, PO Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - M Poeze
- Maastricht University Medical Centre, Department of Surgery and Trauma Surgery, PO Box 5800, 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
21
|
Song M, Zhao D, Wei S, Liu C, Liu Y, Wang B, Zhao W, Yang K, Yang Y, Wu H. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 2014; 35:479-90. [PMID: 25145543 DOI: 10.1002/bem.21867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/17/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Mingyu Song
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Dongming Zhao
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Sheng Wei
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yang Liu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Bo Wang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Wenchun Zhao
- Navy University of Engineering; Wuhan Hubei China
| | - Kaixiang Yang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yong Yang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
22
|
Hannemann PFW, Mommers EHH, Schots JPM, Brink PRG, Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 2014; 134:1093-106. [PMID: 24895156 DOI: 10.1007/s00402-014-2014-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The aim of this systematic review and meta-analysis was to evaluate the best currently available evidence from randomized controlled trials comparing pulsed electromagnetic fields (PEMF) or low-intensity pulsed ultrasound (LIPUS) bone growth stimulation with placebo for acute fractures. MATERIALS AND METHODS We performed a systematic literature search of the medical literature from 1980 to 2013 for randomized clinical trials concerning acute fractures in adults treated with PEMF or LIPUS. Two reviewers independently determined the strength of the included studies by assessing the risk of bias according to the criteria in the Cochrane Handbook for Systematic Reviews of Interventions. RESULTS Seven hundred and thirty-seven patients from 13 trials were included. Pooled results from 13 trials reporting proportion of nonunion showed no significant difference between PEMF or LIPUS and control. With regard to time to radiological union, we found heterogeneous results that significantly favoured PEMF or LIPUS bone growth stimulation only in non-operatively treated fractures or fractures of the upper limb. Furthermore, we found significant results that suggest that the use of PEMF or LIPUS in acute diaphyseal fractures may accelerate the time to clinical union. CONCLUSIONS Current evidence from randomized trials is insufficient to conclude a benefit of PEMF or LIPUS bone growth stimulation in reducing the incidence of nonunions when used for treatment in acute fractures. However, our systematic review and meta-analysis suggest that PEMF or LIPUS can be beneficial in the treatment of acute fractures regarding time to radiological and clinical union. PEMF and LIPUS significantly shorten time to radiological union for acute fractures undergoing non-operative treatment and acute fractures of the upper limb. Furthermore, PEMF or LIPUS bone growth stimulation accelerates the time to clinical union for acute diaphyseal fractures.
Collapse
Affiliation(s)
- P F W Hannemann
- Department of Surgery and Traumasurgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands,
| | | | | | | | | |
Collapse
|
23
|
Ebrahim S, Mollon B, Bance S, Busse JW, Bhandari M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg 2014; 57:E105-18. [PMID: 24869616 PMCID: PMC4035413 DOI: 10.1503/cjs.010113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To best inform evidence-based patient care, it is often desirable to compare competing therapies. We performed a network meta-analysis to indirectly compare low intensity pulsed ultrasonography (LIPUS) with electrical stimulation (ESTIM) for fracture healing. METHODS We searched the reference lists of recent reviews evaluating LIPUS and ESTIM that included studies published up to 2011 from 4 electronic databases. We updated the searches of all electronic databases up to April 2012. Eligible trials were those that included patients with a fresh fracture or an existing delayed union or nonunion who were randomized to LIPUS or ESTIM as well as a control group. Two pairs of reviewers, independently and in duplicate, screened titles and abstracts, reviewed the full text of potentially eligible articles, extracted data and assessed study quality. We used standard and network meta-analytic techniques to synthesize the data. RESULTS Of the 27 eligible trials, 15 provided data for our analyses. In patients with a fresh fracture, there was a suggested benefit of LIPUS at 6 months (risk ratio [RR] 1.17, 95% confidence interval [CI] 0.97-1.41). In patients with an existing nonunion or delayed union, ESTIM had a suggested benefit over standard care on union rates at 3 months (RR 2.05, 95% CI 0.99-4.24). We found very low-quality evidence suggesting a potential benefit of LIPUS versus ESTIM in improving union rates at 6 months (RR 0.76, 95% CI 0.58-1.01) in fresh fracture populations. CONCLUSION To support our findings direct comparative trials with safeguards against bias assessing outcomes important to patients, such as functional recovery, are required.
Collapse
Affiliation(s)
- Shanil Ebrahim
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont
- Department of Anesthesia, McMaster University, Hamilton, Ont
- Stanford Prevention Research Center, Stanford University, Stanford, Calif
| | - Brent Mollon
- Division of Orthopaedics, University of Toronto, Toronto, Ont
| | - Sheena Bance
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, Ont
| | - Jason W. Busse
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont
- Department of Anesthesia, McMaster University, Hamilton, Ont
| | - Mohit Bhandari
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont
- Division of Orthopaedic Surgery, McMaster University, Hamilton, Ont
| |
Collapse
|
24
|
Hu J, Zhang T, Xu D, Qu J, Qin L, Zhou J, Lu H. Combined magnetic fields accelerate bone‐tendon junction injury healing through osteogenesis. Scand J Med Sci Sports 2014; 25:398-405. [PMID: 24845774 DOI: 10.1111/sms.12251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2014] [Indexed: 12/29/2022]
Affiliation(s)
- J. Hu
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - T. Zhang
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - D. Xu
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
| | - J. Qu
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - L. Qin
- Department of Orthopaedics and Traumatology The Chinese University of Hong Kong Hong Kong SAR China
| | - J. Zhou
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
| | - H. Lu
- Department of Sports Medicine, Research Center of Sports Medicine Xiangya Hospital Central South University Changsha Hunan China
| |
Collapse
|
25
|
Caputo M, Zirpoli H, De Rosa MC, Rescigno T, Chiadini F, Scaglione A, Stellato C, Giurato G, Weisz A, Tecce MF, Bisceglia B. Effect of low frequency (LF) electric fields on gene expression of a bone human cell line. Electromagn Biol Med 2013; 33:289-95. [PMID: 23977831 DOI: 10.3109/15368378.2013.822387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We evaluated the effects, on cultured human SaOS-2 cells, of exposures to the low frequency (LF) electric signal (60 kHz sinusoidal wave, 24.5 V peak-to-peak voltage, amplitude modulated by a 12.5 Hz square wave, 50% duty cycle) from an apparatus of current clinical use in bone diseases requiring regenerating processes. Cells in flasks were exposed to a capacitively coupled electric field giving electric current density in the sample of 4 µA/cm(2). The whole expressed cellular mRNAs were systematically analyzed by "DNA microchips" technology to identify all individual species quantitatively affected by field exposure. Comparisons were made between RNA samples from exposed and control sham-exposed cells. Results indicated that immediately and 4 h after exposure there were almost no differentially modulated mRNA species. However, samples obtained at 24 h after exposure showed a small number of limitedly differential signals (7 down-regulated and 3 up-regulated with a cut-off value of ±1.5; 38 and 11, respectively, with a cut-off value of ±1.3), which included mostly mRNA encoding transcription factors and DNA binding proteins. Nevertheless, in identical experimental conditions, we previously demonstrated enzymatic changes of alkaline phosphatase occurring immediately after exposure and declining in a few hours. Therefore, since enzymatic changes occur before those observed at gene regulation level, it is conceivable that only earlier effects are directly due the treatment and then these effects are later able to affect gene expression only indirectly.
Collapse
|
26
|
Mawdsley MJ, Harrison J. Conservative interventions for treating scaphoid fractures in adults. Hippokratia 2013. [DOI: 10.1002/14651858.cd010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J Mawdsley
- Gateshead Health NHS Foundation Trust; Department of Trauma and Orthopaedics; Queen Elizabeth Hospital Sheriff Hill Gateshead Tyne and Wear UK NE9 6SX
| | - John Harrison
- Gateshead Health NHS Foundation Trust; Department of Trauma and Orthopaedics; Queen Elizabeth Hospital Sheriff Hill Gateshead Tyne and Wear UK NE9 6SX
| |
Collapse
|