1
|
Semeshchenko D, Veiga MF, Visus M, Farinati A, Huespe I, Buttaro MA, Slullitel PA. Povidone-iodine and silver nitrate are equally effective in eradicating staphylococcal biofilm grown on a titanium surface: an in-vitro analysis. J Hosp Infect 2024; 155:185-191. [PMID: 39579939 DOI: 10.1016/j.jhin.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/20/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND There is no consensus on the irrigation solution and concentration that should be used when performing a debridement, antibiotics, and implant retention (DAIR) surgery. AIM To determine the minimum biofilm eradication concentration (MBEC) of five antibacterial solutions and to compare their efficacies in eradicating staphylococcal biofilm embedded on a titanium surface. METHODS Meticillin-sensitive Staphylococcus aureus (MSSA) and meticillin-resistant S. aureus (MRSA) ATCC standard strains were grown over porous Ti-6Al-4V acetabular screw-caps. Antibacterial solutions were povidone-iodine, rifampicin, silver nitrate, copper sulphate, and chlorhexidine. MBEC values were calculated for MSSA and MRSA. After 24 h, screw-caps were exposed for 3 min to each solution. Bacterial separation from each specimen was performed with vortex agitation and footprint on agar plate in triplicate. Colony forming units (cfu) were counted pre- and post-agitation, and the delta of cfu/mL was calculated for each solution. A threefold log reduction in cfu was considered a measure of solution efficacy. Comparison between groups was made with Fisher's test. FINDINGS MBEC values for MSSA and MRSA, respectively, were as follows: 8000 μg/mL and 16,000 μg/mL for povidone-iodine; 64 μg/mL and 128 μg/mL for rifampicin; 10,000 μg/mL and 5120 μg/mL for silver nitrate; 900 μg/mL and 900 μg/mL for copper sulphate; 16 μg/mL and 32 μg/mL for chlorhexidine. Rifampicin, copper sulphate and chlorhexidine were ineffective against MSSA and MRSA biofilm compared with povidone-iodine (P<0.01) and silver nitrate (P=0.015) that had a delta cfu reduction >8 log. Povidone-iodine and silver nitrate showed negative footprints without visible MSSA (P=0.005) and MRSA (P=0.014). CONCLUSIONS Povidone-iodine and silver nitrate were the only irrigating solutions capable of eradicating at least 99.9% of 24-h biofilm.
Collapse
Affiliation(s)
- D Semeshchenko
- 'Sir John Charnley' Hip Surgery Unit, Institute of Orthopaedics 'Carlos E. Ottolenghi', Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - M F Veiga
- Bacteriology Department, Italian Hospital of Buenos Aires, ACK1199, Buenos Aires, Argentina
| | - M Visus
- Bacteriology Department, Italian Hospital of Buenos Aires, ACK1199, Buenos Aires, Argentina
| | - A Farinati
- Department of Microbiology, Faculty of Medicine, Salvador University, Buenos Aires, Argentina
| | - I Huespe
- Critical Care Department, Italian Hospital of Buenos Aires, ACK1199, Buenos Aires, Argentina
| | - M A Buttaro
- 'Sir John Charnley' Hip Surgery Unit, Institute of Orthopaedics 'Carlos E. Ottolenghi', Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - P A Slullitel
- 'Sir John Charnley' Hip Surgery Unit, Institute of Orthopaedics 'Carlos E. Ottolenghi', Italian Hospital of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
3
|
Kaspiris A, Vasiliadis E, Pantazaka E, Lianou I, Melissaridou D, Savvidis M, Panagopoulos F, Tsalimas G, Vavourakis M, Kolovos I, Savvidou OD, Pneumaticos SG. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep 2024; 16:298-316. [PMID: 38667751 PMCID: PMC11050497 DOI: 10.3390/idr16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Ioanna Lianou
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Matthaios Savvidis
- Second Orthopedic Department, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Fotios Panagopoulos
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
4
|
Zhou M, Wang J, Wang J, Yu J, Huang S, Wang T, Wei H. Construction of a Localized and Long-Acting CCN2 Delivery System on Percutaneous Ti Implant Surfaces for Enhanced Soft-Tissue Integration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22864-22875. [PMID: 37133335 DOI: 10.1021/acsami.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soft-tissue integration (STI) plays an essential role in the long-term success of percutaneous Ti implants since it acts as a biological barrier that protects the soft and hard tissue around implants. Surface modification of Ti implants with drug-release properties to achieve soft-tissue regeneration has been proven to be effective in STI. However, the short-acting effect caused by the uncontrolled drug release of the topical delivery system limits long-term STI enhancement. Herein, a long-acting protein delivery system for Ti implants that involved micro-arc oxidation of Ti surfaces (MAO-Ti) and localized immobilization of cellular communication network factor 2 (CCN2) bearing mesoporous silica nanoparticles (MSNs) on MAO-Ti was prepared, namely, CCN2@MSNs-Ti. The CCN2 release study of CCN2@MSNs-Ti demonstrated a sustained-release profile for 21 days, which was able to maintain long-term stable STI. In addition, in vitro cell behavior evaluation results indicated that CCN2@MSNs-Ti could promote the STI-related biological response of human dermal fibroblasts via the FAK-MAPK pathway. More importantly, the system could effectively enhance STI after 4 weeks and proinflammatory factors in the soft tissue decreased significantly in a rat model of implantation. These results denote that CCN2@MSNs-Ti showed an appealing application prospect for enhanced STI around transcutaneous Ti implants, which would ultimately result in an increased success rate of percutaneous Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jia Wang
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Shitou Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710129, Shaanxi, P. R. China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| |
Collapse
|
5
|
Giusto E, Blunn G, de Godoy RF, Liu C, Pendegrass C. Optimising soft tissue in-growth in vivo in additive layer manufactured osseointegrated transcutaneous implants. BIOMATERIALS TRANSLATIONAL 2022; 3:243-249. [PMID: 36846509 PMCID: PMC9947732 DOI: 10.12336/biomatertransl.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 03/01/2023]
Abstract
Osseointegrated transcutaneous implants could provide an alternative and improved means of attaching artificial limbs for amputees, however epithelial down growth, inflammation, and infections are common failure modalities associated with their use. To overcome these problems, a tight seal associated with the epidermal and dermal adhesion to the implant is crucial. This could be achieved with specific biomaterials (that mimic the surrounding tissue), or a tissue-specific design to enhance the proliferation and attachment of dermal fibroblasts and keratinocytes. The intraosseous transcutaneous amputation prosthesis is a new device with a pylon and a flange, which is specifically designed for optimising soft tissue attachment. Previously the flange has been fabricated using traditional machining techniques, however, the advent of additive layer manufacturing (ALM) has enabled 3-dimensional porous flanges with specific pore sizes to be used to optimise soft tissue integration and reduce failure of osseointegrated transcutaneous implants. The study aimed to investigate the effect of ALM-manufactured porous flanges on soft tissue ingrowth and attachment in an in vivo ovine model that replicates an osseointegrated percutaneous implant. At 12 and 24 weeks, epithelial downgrowth, dermal attachment and revascularisation into ALM-manufactured flanges with three different pore sizes were compared with machined controls where the pores were made using conventional drilling. The pore sizes of the ALM flanges were 700, 1000 and 1250 μm. We hypothesised that ALM porous flanges would reduce downgrowth, improve soft tissue integration and revascularisation compared with machined controls. The results supported our hypothesis with significantly greater soft tissue integration and revascularisation in ALM porous flanges compared with machined controls.
Collapse
Affiliation(s)
- Elena Giusto
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK,Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, UK,Corresponding author: Elena Giusto,
| | - Gordon Blunn
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Roberta Ferro de Godoy
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK,Writtle University College, Writtle, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Catherine Pendegrass
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| |
Collapse
|
6
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Wang Z, Wu G, Yang Z, Li X, Feng Z, Zhao Y. Chitosan/Hyaluronic Acid/MicroRNA-21 Nanoparticle-Coated Smooth Titanium Surfaces Promote the Functionality of Human Gingival Fibroblasts. Int J Nanomedicine 2022; 17:3793-3807. [PMID: 36072958 PMCID: PMC9444039 DOI: 10.2147/ijn.s375180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
- Correspondence: Zhongshan Wang; Yimin Zhao, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China, Tel/Fax +86-29-84776128, Email ;
| | - Guangsheng Wu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, People’s Republic of China
| | - Zhujun Yang
- Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Guo Y, Liu F, Bian X, Lu K, Huang P, Ye X, Tang C, Li X, Wang H, Tang K. Effect of Pore Size of Porous-Structured Titanium Implants on Tendon Ingrowth. Appl Bionics Biomech 2022; 2022:2801229. [PMID: 35510044 PMCID: PMC9061050 DOI: 10.1155/2022/2801229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The reconstruction of a tendon insertion on metal prostheses is a challenge in orthopedics. Of the available metal prostheses, porous metal prostheses have been shown to have better biocompatibility for tissue integration. Therefore, this study is aimed at identifying an appropriate porous structure for the reconstruction of a tendon insertion on metal prostheses. Methods Ti6Al4V specimens with a diamond-like porous structure with triply periodic minimal surface pore sizes of 300, 500, and 700 μm and a porosity of 58% (designated Ti300, Ti500, and Ti700, respectively) were manufactured by selective laser melting and were characterized with micro-CT and scanning electron microscopy for their porosity, pore size, and surface topography. The porous specimens were implanted into the patellar tendon of rabbits. Tendon integration was evaluated after implantation into the tendon at 4, 8, and 12 weeks by histology, and the fixation strength was evaluated with a pull-out test at week 12. Results The average pore sizes of the Ti300, Ti500, and Ti700 implants were 261, 480, and 668 μm, respectively. The Ti500 and Ti700 implants demonstrated better tissue growth than the Ti300 implant at weeks 4, 8, and 12. At week 12, the histological score of the Ti500 implant was 13.67 ± 0.58, and it had an area percentage of type I collagen of 63.90% ± 3.41%; both of these results were significantly higher than those for the Ti300 and Ti700 implants. The pull-out load at week 12 was also the highest in the Ti500 group. Conclusion Ti6Al4V implants with a diamond-like porous structure with triply periodic minimal surface pore size of 500 μm are suitable for tendon integration.
Collapse
Affiliation(s)
- Yupeng Guo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Liu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuting Bian
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kang Lu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Pan Huang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiao Ye
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinxin Li
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huan Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
9
|
Van den Borre CE, Zigterman BGR, Mommaerts MY, Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater 2022; 110:1713-1723. [PMID: 35103386 PMCID: PMC9306745 DOI: 10.1002/jbm.b.35025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Apart from osseointegration, the stability and long‐term survival of percutaneous titanium implants is also strongly dependent on a qualitative soft‐tissue integration in the transcutaneous region. A firm connective tissue seal is needed to minimize soft‐tissue dehiscence and epithelial downgrowth. It is well‐known that the implant surface plays a key role in controlling the biological response of the surrounding keratinized tissue and several coating systems have been suggested to enhance the soft‐tissue cell interactions. Although some promising results have been obtained in vitro, their clinical significance can be debated. Therefore, the purpose of this systematic review is to gain more insight into the effect of such coatings on the interface formed with keratinized soft‐tissue in vivo. A comprehensive search was undertaken in March 2021. Relevant electronic databases were consulted to identify appropriate studies using a set of search strings. In total, 12 out of 4971 publications were included in this review. The reported coating systems were assigned to several subgroups according to their characteristics: metallic, ceramic and composite. Notwithstanding the differences in study characteristics (animal model, implantation period, reported outcomes), it was noticed that several coatings improve the soft‐tissue integration as compared to pristine titanium. Porous titanium coatings having only limited pore sizes (<250 μm) do not support dermal fibroblast tissue attachment. Yet, larger pores (>700 μm) allow extensive vascularized soft‐tissue infiltration, thereby supporting cell attachment. Nanostructured ceramic coatings are found to reduce the inflammatory response in favor of the formation of cell adhesive structures, that is, hemidesmosomes. Biomolecule coatings seem of particular interest to stimulate the soft‐tissue behavior provided that a durable fixation to the implant surface can be ensured. In this respect, fibroblast growth factor‐2 entrapped in a biomimetic apatite coating instigates a close to natural soft‐tissue attachment with epidermal collagen fibers attaching almost perpendicular to the implant surface. However, several studies had limitations with respect to coating characterization and detailed soft‐tissue analysis, small sample size and short implantation periods. To date, robust and long‐term in vivo studies are still lacking. Further investigation is required before a clear consensus on the optimal coating system allowing enhancing the soft‐tissue seal around percutaneous titanium implants can be reached.
Collapse
Affiliation(s)
- Casper E Van den Borre
- Doctoral School of Life Sciences and Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandaan G R Zigterman
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Y Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Boda SK, Aparicio C. Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sealing around transmucosal oral implants. Biomater Sci 2022; 10:665-677. [PMID: 34981081 DOI: 10.1039/d1bm01649k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unlike the attachment of soft epithelial skin tissue to penetrating solid natural structures like fingernails and teeth, sealing around percutaneous/permucosal devices such as dental implants is hindered by inflammation and epidermal down growth. Here, we employed a dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium to promote oral epithelial tissue attachment. For minimizing inflammation-triggered epidermal down growth, we coated pristine and oxygen plasma pre-treated polished titanium (pTi) with conjugated linoleic acid (CLA). Further, in order to aid in soft tissue attachment via the formation of hemidesmosomes, adhesive structures by oral keratinocytes, we coated the anionic linoleic acid (LA) adsorbed titanium with cationic cell adhesive peptides (CAP), LamLG3, a peptide derived from Laminin 332, the major extracellular matrix component of the basement membrane in skin tissue and Net1, derived from Netrin-1, a neural chemoattractant capable of epithelial cell attachment via α6β4 integrins. The dual CLA-CAP coatings on pTi were characterized by X-ray photoelectron spectroscopy and dynamic water contact angle measurements. The proliferation of human oral keratinocytes (TERT-2/OKF6) was accelerated on the peptide coated titanium while also promoting the expression of Col XVII and β-4 integrin, two markers for hemidesmosomes. Simultaneously, CLA coating suppressed the production of inducible nitric oxide synthase (anti-iNOS); a pro-inflammatory M1 marker expressed in lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7) and elevated expression of anti-CD206, associated to an anti-inflammatory M2 macrophage phenotype. Taken together, the dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium can help reduce inflammation and promote permucosal/peri-implant soft tissue sealing.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Division of Basic Research, Department of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, (Barcelona), Spain. .,BIST - Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
11
|
Sartori M, Borsari V, Maglio M, Brogini S, Bragonzoni L, Zaffagnini S, Fini M. Skin adhesion to the percutaneous component of direct bone anchored systems: systematic review on preclinical approaches and biomaterials. Biomater Sci 2021; 9:7008-7023. [PMID: 34549759 DOI: 10.1039/d1bm00707f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Nowadays, direct bone anchored systems are an increasingly adopted approach in the therapeutic landscape for amputee patients. However, the percutaneous nature of these devices poses a major challenge to obtain a stable and lasting proper adhesion between the implant surface and the skin. A systematic review was carried out in three databases (PubMed, Scopus, Web of Science) to provide an overview of the innovative strategies tested with preclinical models (in vitro and in vivo) in the last ten years to improve the skin adhesion of direct bone anchored systems. Fifty five articles were selected after screening, also employing PECO question and inclusion criteria. A modified Cochrane RoB 2.0 tool for the in vitro studies and the SYRCLE tool for in in vivo studies were used to assess the risk of bias. The evidence collected suggests that the implementation of porous percutaneous structures could be one of the most favorable approach to improve proper skin adhesion, especially in association with bioactive coatings, as hydroxyapatite, and exploiting the field of nanostructure. Some issues still remain open as (a) the identification and characterization of the best material/coating association able to limit the shear stresses at the interface and (b) the role of keratinocyte turnover on the skin/biomaterial adhesion and integration processes.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Veronica Borsari
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Melania Maglio
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Silvia Brogini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Laura Bragonzoni
- University of Bologna - Department for Life Quality Studies, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS - Istituto Ortopedico Rizzoli, II Orthopaedic and Traumatologic Clinic, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
12
|
Li Y, Felländer-Tsai L. The bone anchored prostheses for amputees - Historical development, current status, and future aspects. Biomaterials 2021; 273:120836. [PMID: 33894405 DOI: 10.1016/j.biomaterials.2021.120836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
In the past 50 years, bone anchored prostheses have evolved from a concept for experimental treatment to a rapidly developing area in orthopedics and traumatology. Up to date, there are dozens of centers in the world providing osseointegration amputation reconstructions and more than a thousand patients using the bone anchored prostheses. Compared with conventional socket prostheses, the bone anchored prosthesis by osseointegration avoids the debilitating problems related with soft tissues. It also provides physiological weight bearing, improved range of motion, and sensory feedback, all of which contribute to the improvement on quality of life for amputees. The present article briefly reviews the historical development of osseointegration surgery for amputation reconstruction and the current challenges. The implant design characters and surgical techniques of the two types of implants; the screw-type implant (presented by the OPRA system), and the press-fit implants (presented by EEP and OPL systems) are described. The major complications, infections and mechanical failures, are discussed in detail based on the latest evidence. Future aspects and experimental trials aiming to overcome the current challenges are presented.
Collapse
Affiliation(s)
- Yan Li
- Division of Orthopaedics and Biotechnology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Theme Trauma and Reparative Medicine, Department of Orthopedics and Traumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Li Felländer-Tsai
- Division of Orthopaedics and Biotechnology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Theme Trauma and Reparative Medicine, Department of Orthopedics and Traumatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
张 一, 张 宪, 胡 中, 任 兴, 王 茜, 王 志. [Research progress on antibacterial properties of porous medical implant materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1478-1485. [PMID: 33191710 PMCID: PMC8171714 DOI: 10.7507/1002-1892.202001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The antibacterial properties of porous medical implant materials were reviewed to provide guidance for further improvement of new medical implant materials. METHODS The literature related to the antibacterial properties of porous medical implant materials in recent years was consulted, and the classification, characteristics and applications, and antibacterial methods of porous medical implant materials were reviewed. RESULTS Porous medical implant materials can be classified according to surface pore size, preparation process, degree of degradation in vivo, and material source. It is widely used in the medical field due to its good biocompatibility and biomechanical properties. Nevertheless, the antibacterial properties of porous medical implant materials themselves are not obvious, and their antibacterial properties need to be improved through structural modification, overall modification, and coating modification. CONCLUSION At present, coating modification as the mainstream modification method for improving the antibacterial properties of porous medical materials is still a research hotspot. The introduction of new antibacterial substances provides a new perspective for the development of new coated porous medical implant materials, so that the porous medical implant materials have a more reliable antibacterial effect while taking into account biocompatibility.
Collapse
Affiliation(s)
- 一 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 宪高 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 中岭 胡
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 兴宇 任
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 茜 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 志强 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
- 华北理工大学临床医学院(河北唐山 063000)School of Clinical Medicine, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| |
Collapse
|
14
|
Hobusch GM, Döring K, Brånemark R, Windhager R. Advanced techniques in amputation surgery and prosthetic technology in the lower extremity. EFORT Open Rev 2020; 5:724-741. [PMID: 33204516 PMCID: PMC7608512 DOI: 10.1302/2058-5241.5.190070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone-anchored implants give patients with unmanageable stump problems hope for drastic improvements in function and quality of life and are therefore increasingly considered a viable solution for lower-limb amputees and their orthopaedic surgeons, despite high infection rates.Regarding diversity and increasing numbers of implants worldwide, efforts are to be supported to arrange an international bone-anchored implant register to transparently overview pros and cons.Due to few, but high-quality, articles about the beneficial effects of targeted muscle innervation (TMR) and regenerative peripheral nerve interface (RPNI), these surgical techniques ought to be directly transferred into clinical protocols, observations and routines.Bionics of the lower extremity is an emerging cutting-edge technology. The main goal lies in the reduction of recognition and classification errors in changes of ambulant modes. Agonist-antagonist myoneuronal interfaces may be a most promising start in controlling of actively powered ankle joints.As advanced amputation surgical techniques are becoming part of clinical routine, the development of financing strategies besides medical strategies ought to be boosted, leading to cutting-edge technology at an affordable price.Microprocessor-controlled components are broadly available, and amputees do see benefits. Devices from different manufacturers differ in gait kinematics with huge inter-individual varieties between amputees that cannot be explained by age. Active microprocessor-controlled knees/ankles (A-MPK/As) might succeed in uneven ground-walking. Patients ought to be supported to receive appropriate prosthetic components to reach their everyday goals in a desirable way.Increased funding of research in the field of prosthetic technology could enhance more high-quality research in order to generate a high level of evidence and to identify individuals who can profit most from microprocessor-controlled prosthetic components. Cite this article: EFORT Open Rev 2020;5:724-741. DOI: 10.1302/2058-5241.5.190070.
Collapse
Affiliation(s)
- Gerhard M Hobusch
- Medical University of Vienna, Department of Orthopaedics and Trauma Surgery, Vienna, Austria
| | - Kevin Döring
- Medical University of Vienna, Department of Orthopaedics and Trauma Surgery, Vienna, Austria
| | - Rickard Brånemark
- Gothenburg University, Gothenburg, Sweden.,Biomechatronics Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Reinhard Windhager
- Medical University of Vienna, Department of Orthopaedics and Trauma Surgery, Vienna, Austria
| |
Collapse
|
15
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
16
|
Lancashire HT, Al Ajam Y, Dowling RP, Pendegrass CJ, Blunn GW. Hard-wired Epimysial Recordings from Normal and Reinnervated Muscle Using a Bone-anchored Device. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2391. [PMID: 31741811 PMCID: PMC6799399 DOI: 10.1097/gox.0000000000002391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/02/2022]
Abstract
A combined approach for prosthetic attachment and control using a transcutaneous bone-anchored device and implanted muscle electrodes can improve function for upper-limb amputees. The bone-anchor provides a transcutaneous feed-through for muscle signal recording. This approach can be combined with targeted muscle reinnervation (TMR) to further improve myoelectric control. METHODS A bone-anchored device was implanted trans-tibially in n = 8 sheep with a bipolar recording electrode secured epimysially to the peroneus tertius muscle. TMR was carried out in a single animal: the peroneus tertius was deinnervated and the distal portion of the transected nerve to the peroneus muscle was coapted to a transected nerve branch previously supplying the tibialis anterior muscle. For 12 weeks (TMR) or 19 weeks (standard procedure), epimysial muscle signals were recorded while animals walked at 2 km·h-1. RESULTS After 19 weeks implantation following standard procedure, epimysial recording signal-to-noise ratio (SNR) was 18.7 dB (± 6.4 dB, 95% CI) with typical recordings falling in the range 10-25 dB. Recoveries in gait and muscle signals were coincident 6 weeks post-TMR; initial muscle activity was identifiable 3 weeks post-TMR though with low signal amplitude and signal-to-noise ratio compared with normal muscle recordings. CONCLUSIONS Following recovery, muscle signals were recorded reliably over 19 weeks following implantation. In this study, targeted reinnervation was successful in parallel with bone-anchor implantation, with recovery identified 6 weeks after surgery.
Collapse
Affiliation(s)
- Henry T. Lancashire
- From the Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Yazan Al Ajam
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, London, UK
- Royal Free Hospital, London, UK
| | - Robert P. Dowling
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Catherine J. Pendegrass
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Gordon W. Blunn
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, London, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
17
|
Titanium surface modifications and their soft-tissue interface on nonkeratinized soft tissues-A systematic review (Review). Biointerphases 2019; 14:040802. [PMID: 31419910 DOI: 10.1116/1.5113607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
In this systematic review, the authors explored the surface aspects of various titanium (Ti) or Ti alloy medical implants, examining the interface formed between the implant and surrounding nonkeratinized soft tissues (periosteum, muscles, tendons, fat, cicatrix, or dura mater). A comprehensive search undertaken in July 2019 used strict keywords in relevant electronic databases to identify relevant studies. Based on the authors' inclusion criteria (restricted to in vivo studies), 19 of 651 publications qualified, all pertaining to animal models. The syrcle's risk of bias tool for animal studies was applied at study level. Given the broad nature of the reported results and the many different parameters measured, the articles under scrutiny were assigned to five research subgroups according to their surface modification types: mechanical surface modifications, oxidative processes (e.g., acid etching, anodization, microarc oxidation), sol-gel derived titania (TiO2) coatings, biofunctionalized surfaces, and a subgroup for other modifications. The primary outcome was a liquid space at the interface (e.g., seroma formation) that was reported in six studies. Machining Ti implants to a roughness between Ra = 0.5 and 1.0 μm was shown to induce soft-tissue adhesion. Smoother surfaces, with the exception of acid polished and anodized Ti (Ra = 0.2 μm), prevented soft-tissue adhesion. A fibroblast growth factor 2 apatite composite coating promoted soft-tissue attachment via Sharpey-like fibers. In theory, this implant-soft tissue interface could be nearly perfect.
Collapse
|
18
|
Shao J, Wang B, Bartels CJM, Bronkhorst EM, Jansen JA, Walboomers XF, Yang F. Chitosan-based sleeves loaded with silver and chlorhexidine in a percutaneous rabbit tibia model with a repeated bacterial challenge. Acta Biomater 2018; 82:102-110. [PMID: 30342284 DOI: 10.1016/j.actbio.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022]
Abstract
Various strategies have been explored to prevent pin tract infections (PTI), including the use of antibacterial sleeves. However, an ideal animal model to evaluate the efficacy of antibacterial strategies is still lacking. This study aimed to construct an animal model with a consistent induction of infection after bacterial challenge. Further, the efficacy of silver and chlorhexidine loaded chitosan sleeves was evaluated to prevent PTI around a percutaneous implant. Titanium pins wrapped with sleeves were implanted in anterior lateral rabbit tibia. After 2 weeks, Staphylococcus aureus suspensions (1 × 106 CFU) were injected weekly to the exit site, and the clinical infection status was recorded. After 6 weeks, all rabbits were euthanized to evaluate the bacterial colonization microbiologically and histomorphometrically. Results showed that the implant screw bilaterally penetrated the tibia and kept the implant stable. A rod length of twice the thickness of the soft-tissue layer was necessary to maintain the percutaneous penetration of the implants. A 100% infection rate was obtained by the bacterial inoculation. Silver loaded sleeves reduced significantly the bacterial density and reduced the inflammatory symptoms of the percutaneous pin tract. However, the addition of chlorhexidine to the sleeves had no added value in terms of further reduction of bacteria and inflammation. In conclusion, a consistent animal model was designed to evaluate strategies to prevent PTI. In addition, the use of silver loaded chitosan sleeves can be pursued for further (pre-)clinical exploration for the prevention of PTI. STATEMENT OF SIGNIFICANCE: This study constructed a bacterial challenged percutaneous rabbit tibia model to evaluate the potential of antibacterial strategies for the prevention of pin tract infections. The model was applied to evaluate a silver and chlorhexidine loaded membranes as an antibacterial sleeve. Our results demonstrate that the rabbit tibia model is suitable to evaluate antibacterial strategies for the prevention of pin tract infection as evidenced by the stable, bone fixed percutaneous implant and a 100% infection rate of the percutaneous pin tract. Silver loaded sleeves can lower the bacterial density of the percutaneous pin tract, but the addition of chlorhexidine to the silver-loaded sleeves does not contribute to an enhanced antibacterial effect. Such experiments are of considerable interest to those in the research community, industry, and clinicians involved the occurrence of infection of skin penetrating medical devices.
Collapse
Affiliation(s)
- Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Bing Wang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Carla J M Bartels
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Ewald M Bronkhorst
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Hansson E, Hagberg K, Cawson M, Brodtkorb TH. Patients with unilateral transfemoral amputation treated with a percutaneous osseointegrated prosthesis: a cost-effectiveness analysis. Bone Joint J 2018; 100-B:527-534. [PMID: 29629586 DOI: 10.1302/0301-620x.100b4.bjj-2017-0968.r1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aims The aim of this study was to compare the cost-effectiveness of treatment with an osseointegrated percutaneous (OI-) prosthesis and a socket-suspended (S-) prosthesis for patients with a transfemoral amputation. Patients and Methods A Markov model was developed to estimate the medical costs and changes in quality-adjusted life-years (QALYs) attributable to treatment of unilateral transfemoral amputation over a projected period of 20 years from a healthcare perspective. Data were collected alongside a prospective clinical study of 51 patients followed for two years. Results OI-prostheses had an incremental cost per QALY gained of €83 374 compared with S-prostheses. The clinical improvement seen with OI-prostheses was reflected in QALYs gained. Results were most sensitive to the utility value for both treatment arms. The impact of an annual decline in utility values of 1%, 2%, and 3%, for patients with S-prostheses resulted in a cost per QALY gained of €37 020, €24 662, and €18 952, respectively, over 20 years. Conclusion From a healthcare perspective, treatment with an OI-prosthesis results in improved quality of life at a relatively high cost compared with that for S-prosthesis. When patients treated with S-prostheses had a decline in quality of life over time, the cost per QALY gained by OI-prosthesis treatment was considerably reduced. Cite this article: Bone Joint J 2018;100-B:527-34.
Collapse
Affiliation(s)
- E Hansson
- Institute of Health and Care Sciences, Sahlgrenska Academy University of Gothenburg, Medicinaregatan 3, Gothenburg 413 90, Sweden and Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - K Hagberg
- University of Gothenburg, Medicinaregatan 3, Gothenburg 413 90, Sweden and Advanced Reconstruction of Extremities and Department of Prosthetics and Orthotics, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - M Cawson
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester M20 2LS, UK
| | - T H Brodtkorb
- RTI Health Solutions, Vällebergsv 9B, Ljungskile 459 30, Sweden
| |
Collapse
|