1
|
Ho WC, Chang CC, Wu WT, Lee RP, Yao TK, Peng CH, Yeh KT. Effect of Osteoporosis Treatments on Osteoarthritis Progression in Postmenopausal Women: A Review of the Literature. Curr Rheumatol Rep 2024; 26:188-195. [PMID: 38372871 PMCID: PMC11063098 DOI: 10.1007/s11926-024-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to determine if medications used to treat osteoporosis are also effective for treating osteoarthritis (OA). RECENT FINDINGS A total of 40 relevant articles were identified. Studies were categorized into those (1) discussing estrogen and selective estrogen receptor modulators (SERMs), (2) bisphosphonates, (3) parathyroid hormone (PTH) analogs, and (4) denosumab, and (5) prior review articles. A large amount of evidence suggests that estrogen and SERMs are effective at reducing OA symptoms and disease progression. Evidence suggests that bisphosphonates, the most common medications used to treat osteoporosis, can reduce OA symptoms and disease progression. In vivo studies suggest that PTH analogs may improve the cartilage destruction associated with OA; however, few human trials have examined its use for OA. Denosumab is approved to treat osteoporosis, bone metastases, and certain types of breast cancer, but little study has been done with respect to its effect on OA. The current evidence indicates that medications used to treat osteoporosis are also effective for treating OA. Estrogen, SERMs, and bisphosphonates have the most potential as OA therapies. Less is known regarding the effectiveness of PTH analogs and denosumab in OA, and more research is needed.
Collapse
Affiliation(s)
- Wang-Chun Ho
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wen-Tien Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ting-Kuo Yao
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Xu L, Li Y, Mei L, Qi H, Fang J, Li Y. Local injection of abaloparatide promotes mandibular condyle lengthening in adolescent rats via enhancing chondrogenesis and ossification. J Oral Rehabil 2024; 51:380-393. [PMID: 37727017 DOI: 10.1111/joor.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/16/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Mandibular condylar hypoplasia negatively affects patient's facial appearance and dentofacial function. OBJECTIVE To investigate the effect of local injection of the drug abaloparatide (ABL), an analogue of parathyroid hormone related protein (PTHrP), on promoting lengthening of the mandibular condyle. METHODS Thirty adolescent male Sprague-Dawley rats were randomly divided into two groups, which received the injection of ABL or normal saline (the control) every 3 days in the temporomandibular joint (TMJ) cavity. Cone-beam computed tomography and immunohistochemistry assays were performed at 2, 4 and 6 weeks since the injection. Mandibular condylar chondrocytes (MCC) and pre-osteoblasts were treated with ABL or PBS, followed by the CCK-8 detection, IC50, real-time PCR assay, Western Blot and immunofluorescence staining. RESULTS In vivo, compared with the control, the ABL group significantly increased the mandibular condylar process length (by 1.34 ± 0.59 mm at 6 weeks), the thickness of the cartilage layer, and enhanced the matrix synthesis. The ABL group had significant up-regulation of SOX 9, COL II, PTHrP and PTH1R, down-regulation of COL X in the cartilage, up-regulation of RUNX 2, and unchanged osteoclastogenesis in the subchondral bone. In vitro, the intra-TMJ injection of ABL promoted the MCC proliferation, with up-regulated expression of chondrogenic genes, and enhanced osteogenic differentiation of the pre-osteoblasts. CONCLUSIONS Intra-TMJ injection of abaloparatide promotes mandibular condyle lengthening in the adolescent rats via enhancing chondrogenesis in the mandibular condylar cartilage and ossification in the subchondral bone.
Collapse
Affiliation(s)
- Lin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Hexu Qi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Makaram NS, Simpson AHRW. Disease-modifying agents in osteoarthritis: where are we now and what does the future hold? Bone Joint Res 2023; 12:654-656. [PMID: 37839796 PMCID: PMC10577043 DOI: 10.1302/2046-3758.1210.bjr-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Cite this article: Bone Joint Res 2023;12(10):654–656.
Collapse
Affiliation(s)
- Navnit S. Makaram
- Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
- University of Edinburgh, Edinburgh, UK
| | - A. H. R. W. Simpson
- Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
- University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Abstract
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Qi-ling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Li G, Liu S, Chen Y, Zhao J, Xu H, Weng J, Yu F, Xiong A, Udduttula A, Wang D, Liu P, Chen Y, Zeng H. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:3159. [PMID: 37258510 DOI: 10.1038/s41467-023-38597-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Intra-articular injection of therapeutics is an effective strategy for treating osteoarthritis (OA), but it is hindered by rapid drug diffusion, thereby necessitating high-frequency injections. Hence, the development of a biofunctional hydrogel for improved delivery is required. In this study, we introduce a liposome-anchored teriparatide (PTH (1-34)) incorporated into a gallic acid-grafted gelatin injectable hydrogel (GLP hydrogel). We show that the GLP hydrogel can form in situ and without affecting knee motion after intra-articular injection in mice. We demonstrate controlled, sustained release of PTH (1-34) from the GLP hydrogel. We find that the GLP hydrogel promotes ATDC5 cell proliferation and protects the IL-1β-induced ATDC5 cells from further OA progression by regulating the PI3K/AKT signaling pathway. Further, we show that intra-articular injection of hydrogels into an OA-induced mouse model promotes glycosaminoglycans synthesis and protects the cartilage from degradation, supporting the potential of this biomaterial for OA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jin Zhao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Anjaneyulu Udduttula
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
7
|
Li G, Liu S, Xu H, Chen Y, Deng J, Xiong A, Wang D, Weng J, Yu F, Gao L, Ding C, Zeng H. Potential effects of teriparatide (PTH (1-34)) on osteoarthritis: a systematic review. Arthritis Res Ther 2023; 25:3. [PMID: 36609338 PMCID: PMC9817404 DOI: 10.1186/s13075-022-02981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a common and prevalent degenerative joint disease characterized by degradation of the articular cartilage. However, none of disease-modifying OA drugs is approved currently. Teriparatide (PTH (1-34)) might stimulate chondrocyte proliferation and cartilage regeneration via some uncertain mechanisms. Relevant therapies of PTH (1-34) on OA with such effects have recently gained increasing interest, but have not become widespread practice. Thus, we launch this systematic review (SR) to update the latest evidence accordingly. A comprehensive literature search was conducted in PubMed, Web of Science, MEDLINE, the Cochrane Library, and Embase from their inception to February 2022. Studies investigating the effects of the PTH (1-34) on OA were obtained. The quality assessment and descriptive summary were made of all included studies. Overall, 307 records were identified, and 33 studies were included. In vivo studies (n = 22) concluded that PTH (1-34) slowed progression of OA by alleviating cartilage degeneration and aberrant remodeling of subchondral bone (SCB). Moreover, PTH (1-34) exhibited repair of cartilage and SCB, analgesic, and anti-inflammatory effects. In vitro studies (n = 11) concluded that PTH (1-34) was important for chondrocytes via increasing the proliferation and matrix synthesis but preventing apoptosis or hypertrophy. All included studies were assessed with low or unclear risk of bias in methodological quality. The SR demonstrated that PTH (1-34) could alleviate the progression of OA. Moreover, PTH (1-34) had beneficial effects on osteoporotic OA (OPOA) models, which might be a therapeutic option for OA and OPOA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Su Liu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Huihui Xu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Yixiao Chen
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jiapeng Deng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Ao Xiong
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Deli Wang
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jian Weng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Fei Yu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany. .,Sino Euro Orthopaedics Network (SEON), Berlin, Germany.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China. .,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|
8
|
Li G, Liu S, Chen Y, Xu H, Qi T, Xiong A, Wang D, Yu F, Weng J, Zeng H. Teriparatide ameliorates articular cartilage degradation and aberrant subchondral bone remodeling in DMM mice. J Orthop Translat 2022; 38:241-255. [PMID: 36514714 PMCID: PMC9731868 DOI: 10.1016/j.jot.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Knee osteoarthritis (KOA) is a highly prevalent musculoskeletal disorder characterized by degeneration of cartilage and abnormal remodeling of subchondral bone (SCB). Teriparatide (PTH (1-34)) is an effective anabolic drug for osteoporosis (OP) and regulates osteoprotegerin (OPG)/receptor activator of nuclear factor ligand (RANKL)/RANK signaling, which also has a therapeutic effect on KOA by ameliorating cartilage degradation and inhibiting aberrant remodeling of SCB. However, the mechanisms of PTH (1-34) in treating KOA are still uncertain and remain to be explored. Therefore, we compared the effect of PTH (1-34) on the post-traumatic KOA mouse model to explore the potential therapeutic effect and mechanisms. Methods In vivo study, eight-week-old male mice including wild-type (WT) (n = 54) and OPG-/- (n = 54) were investigated and compared. Post-traumatic KOA model was created by destabilization of medial meniscus (DMM). WT mice were randomly assigned into three groups: the sham group (WT-sham; n = 18), the DMM group (WT-DMM; n = 18), and the PTH (1-34)-treated group (WT-DMM + PTH (1-34); n = 18). Similarly, the OPG-/- mice were randomly allocated into three groups as well. The designed mice were executed at the 4th, 8th, and 12th weeks to evaluate KOA progression. To further explore the chondro-protective of PTH (1-34), the ATDC5 chondrocytes were stimulated with different concentrations of PTH (1-34) in vitro. Results Compared with the WT-sham mice, significant wear of cartilage in terms of reduced cartilage thickness and glycosaminoglycan (GAG) loss was detected in the WT-DMM mice. PTH (1-34) exhibited cartilage-protective by alleviating wear, retaining the thickness and GAG contents. Moreover, the deterioration of the SCB was alleviated and the expression of PTH1R/OPG/RANKL/RANK were found to increase after PTH (1-34) treatment. Among the OPG-/- mice, the cartilage of the DMM mice displayed typical KOA change with higher OARSI score and thinner cartilage. The damage of the cartilage was alleviated but the abnormal remodeling of SCB didn't show any response to the PTH (1-34) treatment. Compared with the WT-DMM mice, the OPG-/--DMM mice caught more aggressive KOA with thinner cartilage, sever cartilage damage, and more abnormal remodeling of SCB. Moreover, both the damaged cartilage from the WT-DMM mice and the OPG-/--DMM mice were alleviated but only the deterioration of SCB in WT-DMM mice was alleviated after the administration of PTH (1-34). In vitro study, PTH (1-34) could promote the viability of chondrocytes, enhance the synthesis of extracellular matrix (ECM) (AGC, COLII, and SOX9) at the mRNA and protein level, but inhibit the secretion of inflammatory cytokines (TNF-α and IL-6). Conclusion Both wear of the cartilage was alleviated and aberrant remodeling of the SCB was inhibited in the WT mice, but only the cartilage-protective effect was observed in the OPG-/- mice. PTH (1-34) exhibited chondro-protective effect by decelerating cartilage degeneration in vivo as well as by promoting the proliferation and enhancing ECM synthesis of chondrocytes in vitro. The current investigation implied that the rescue of the disturbed SCB is dependent on the regulation of OPG while the chondro-protective effect is independent of modulation of OPG, which provides proof for the treatment of KOA. The translational potential of this article Systemic administration of PTH (1-34) could exert a therapeutic effect on both cartilage and SCB in different mechanisms to alleviate KOA progression, which might be a novel therapy for KOA.
Collapse
Key Words
- AB, Alican blue
- ADAMTS5, ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5
- AGC, Aggrecan
- AGC, aggrecan
- ANOVA, one-way analysis of variance
- ARRIVE, Animal Research: Reporting of In Vivo Experiments
- BMD, bone mineral density
- BV/TV, bone volume fraction
- CCK-8, cell counting kit-8
- CLSM, confocal laser scanning microscope
- COLII, Type II collagen
- COLX, Type X collagen
- Cartilage
- DMEM, Dulbecco's Modified Eagle's Medium
- DMM, destabilization of medical meniscus
- ECM, extracellular matrix
- EDTA, ethylene diamine tetra acetic acid
- ELISA, enzyme-linked immunosorbent assay
- EdU, 5-ethynyl-2′-deoxyuridine
- FBS, fatal bovine serum
- GAG, glycosaminoglycan
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HE, hematoxylin and eosin
- HPLC, High Performance Liquid Chromatography
- IL-1β, Interleukin-1β
- IL-6, Interleukin-6
- KOA, knee osteoarthritis
- Knee osteoarthritis
- MMP13, Matrix Metallopeptidase 13
- MT, masson's trichrome
- Micro-CT, microcomputer tomography
- NCBI, National Center for Biotechnology Information
- OARSI, Osteoarthritis Research Society International
- OD, optical density
- OP, osteoporosis
- OPG, osteoprotegerin
- OPG−/−, osteoprotegerin-knockout
- Osteoprotegerin (OPG)
- PBS, phosphate buffer solution
- PCR, polymerase chain reaction
- PTH (1–34), Teriparatide
- ROI, region of interest
- RT-qPCR, quantitative reverse transcription polymerase chain reaction
- S.I, subcutaneous injection
- SCB, subchondral bone
- SMI, structure model index
- SOFG, Safranin O-fast green
- SOX9, SRY-Box Transcription Factor 9
- Subchondral bone
- TB, toluidine blue O
- TNF-α, tumor necrosis factor-α
- Tb.N, trabecular number
- Tb.Th, trabecular thickness
- Teriparatide (PTH (1–34))
- WT, wild type
- nM, nMol/L
Collapse
Affiliation(s)
- Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- Corresponding author. Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- Corresponding author. Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China, 518036
- Corresponding author. National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| |
Collapse
|
9
|
Wang Z, Wang R, Xiang S, Gu Y, Xu T, Jin H, Gu X, Tong P, Zhan H, Lv S. Assessment of the effectiveness and satisfaction of platelet-rich plasma compared with hyaluronic acid in knee osteoarthritis at minimum 7-year follow-up: A post hoc analysis of a randomized controlled trial. Front Bioeng Biotechnol 2022; 10:1062371. [PMID: 36507262 PMCID: PMC9732106 DOI: 10.3389/fbioe.2022.1062371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Knee osteoarthritis (KOA) can be effectively treated conservatively using platelet-rich plasma (PRP) injections into the affected joints. While the short-term therapeutic clinical benefits were well documented, the mid-term results remain undetermined. To clarify its efficacy, the mid-term clinical outcomes of intra-articular injections of either PRP or hyaluronic acid (HA) in KOA were compared. Methods: One hundred patients who complied with the inclusion criteria were randomized to undergo once a week 3 weeks, intra-articular injections of either PRP or HA. Patients were evaluated before the injection, at 3, 6, and a mean of 78.9 months of follow-up. Eighty-five patients reached the final evaluation. Data on survival, re-intervention, pain, function, imaging, and satisfaction were collected and analyzed. Results: With surgery for any reason as the endpoint, the cumulative survival rate of the PRP group was 90%, while that of the HA group was 74%. There was a significant difference between the two groups in the total re-intervention rate (56.7% vs 16.2%, p < 0.05). The comparative analyses showed significant intergroup differences in the visual analog scale (VAS) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (p < 0.01, p < 0.05, respectively) at the final follow-up. And base on the regression analyses, the type of treatment, age, and Kellgren-Lawrence (K-L) grade served as statistically an independent determinants of VAS (p < 0.001, p = 0.034, p < 0.001, respectively). Likewise, those variables independently determined WOMAC in our study. However, no difference was observed in the imaging evaluation, containing the K-L grade and Cartilage Lesion Score, between the two groups (p > 0.05). Besides, the satisfaction treated by the PRP was 78.6%, with a superiority compared with HA (55.8%, p < 0.05), and no complications were noted in the whole treatment process among patients who participated. Conclusion: PRP was more effective than HA in survival and re-intervention rates, VAS, and WOMAC, although there were no significant differences in the imaging evaluation between the two groups. Furthermore, patients treated with PRP were associated with higher satisfaction compared with HA.
Collapse
Affiliation(s)
- Zhengming Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sicheng Xiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yong Gu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Ting Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hengkai Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinbo Gu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongsheng Zhan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Shuaijie Lv, ; Hongsheng Zhan,
| | - Shuaijie Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China,*Correspondence: Shuaijie Lv, ; Hongsheng Zhan,
| |
Collapse
|
10
|
Kawai T, Nishitani K, Okuzu Y, Goto K, Kuroda Y, Kuriyama S, Nakamura S, Matsuda S. Bisphosphonate use is associated with a decreased joint narrowing rate in the non-arthritic hip. Bone Joint Res 2022; 11:826-834. [DOI: 10.1302/2046-3758.1111.bjr-2022-0155.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aims The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. Methods We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model. Results A total of 45 of 398 (11.3%) eligible patients were taking an oral bisphosphonate at the time of knee surgery, with a mean age of 75.8 years (SD 6.2) in bisphosphonate users and 75.7 years (SD 6.8) in non-users. The mean joint space narrowing rate was 0.04 mm/year (SD 0.11) in bisphosphonate users and 0.12 mm/year (SD 0.25) in non-users (p < 0.001). In the multivariate model, age (standardized coefficient = 0.0867, p = 0.016) and the use of a bisphosphonate (standardized coefficient = −0.182, p < 0.001) were associated with the joint space narrowing rate. After successfully matching 43 bisphosphonate users and 86 non-users, the joint narrowing rate was smaller in bisphosphonate users (p < 0.001). Conclusion The use of bisphosphonates is associated with decreased joint degeneration in non-arthritic hips after knee arthroplasty. Bisphosphonates slow joint degeneration, thus maintaining the thickness of joint cartilage in the normal joint or during the early phase of osteoarthritis. Cite this article: Bone Joint Res 2022;11(11):826–834.
Collapse
Affiliation(s)
- Toshiyuki Kawai
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Kuroda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinichiro Nakamura
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Veronesi F, Salamanna F, Martini L, Fini M. Naturally Occurring Osteoarthritis Features and Treatments: Systematic Review on the Aged Guinea Pig Model. Int J Mol Sci 2022; 23:ijms23137309. [PMID: 35806306 PMCID: PMC9266929 DOI: 10.3390/ijms23137309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022] Open
Abstract
To date, several in vivo models have been used to reproduce the onset and monitor the progression of osteoarthritis (OA), and guinea pigs represent a standard model for studying naturally occurring, age-related OA. This systematic review aims to characterize the guinea pig for its employment in in vivo, naturally occurring OA studies and for the evaluation of specific disease-modifying agents. The search was performed in PubMed, Scopus, and Web of Knowledge in the last 10 years. Of the 233 records screened, 49 studies were included. Results showed that within a relatively short period of time, this model develops specific OA aspects, including cartilage degeneration, marginal osteophytes formation, and subchondral bone alterations. Disease severity increases with age, beginning at 3 months with mild OA and reaching moderate–severe OA at 18 months. Among the different strains, Dunkin Hartley develops OA at a relatively early age. Thus, disease-modifying agents have mainly been evaluated for this strain. As summarized herein, spontaneous development of OA in guinea pigs represents an excellent model for studying disease pathogenesis and for evaluating therapeutic interventions. In an ongoing effort at standardization, a detailed characterization of specific OA models is necessary, even considering the main purpose of these models, i.e., translatability to human OA.
Collapse
|
12
|
Jun Z, Yuping W, Yanran H, Ziming L, Yuwan L, Xizhong Z, Zhilin W, Xiaoji L. Human acellular amniotic membrane scaffolds encapsulating juvenile cartilage fragments accelerate the repair of rabbit osteochondral defects. Bone Joint Res 2022; 11:349-361. [PMID: 35678202 PMCID: PMC9233407 DOI: 10.1302/2046-3758.116.bjr-2021-0490.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks. Results In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups. Conclusion HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: Bone Joint Res 2022;11(6):349–361.
Collapse
Affiliation(s)
- Zhang Jun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Yuping
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huang Yanran
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ziming
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Li Yuwan
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Zhu Xizhong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Zhilin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luo Xiaoji
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Chen CH, Cheng TL, Chang CF, Huang HT, Lin SY, Wu MH, Kang L. Raloxifene Ameliorates Glucosamine-Induced Insulin Resistance in Ovariectomized Rats. Biomedicines 2021; 9:biomedicines9091114. [PMID: 34572301 PMCID: PMC8466068 DOI: 10.3390/biomedicines9091114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are common among older women, especially postmenopausal women. Glucosamine (GlcN) is a common medication for OA, but it may induce insulin resistance and β-cell dysfunction, especially if ovarian hormones are lacking. Raloxifene (RLX) is a selective estrogen receptor modulator and also an OP drug. Previously, we found that estrogen could improve GlcN-induced insulin resistance in ovariectomized (OVX) rats. Here, we further hypothesized that RLX, similarly to estrogen, can ameliorate GlcN-induced insulin resistance in OVX rats. We used GlcN to induce insulin resistance in OVX rats as a model for evaluating the protective effects of RLX in vivo. We used a pancreatic β-cell line, MIN-6, to study the mechanisms underlying the effect of RLX in GlcN-induced β-cell dysfunction in vitro. Increases in fasting plasma glucose, insulin, and homeostasis model assessments of insulin resistance in OVX Sprague Dawley rats treated with GlcN were reversed by RLX treatment (n = 8 in each group). Skeletal muscle GLUT-4 increased, liver PEPCK decreased, pancreatic islet hypertrophy, and β-cell apoptosis in OVX rats treated with GlcN was ameliorated by RLX. The negative effects of GlcN on insulin secretion and cell viability in MIN-6 cells were related to the upregulation of reticulum (ER) stress-associated proteins (C/EBP homologous protein, phospho-extracellular signal-regulated kinase, phospho-c-JunN-terminal kinase), the expression of which was reduced by RLX. Pretreatment with estrogen receptor antagonists reversed the protective effects of RLX. GlcN can induce insulin resistance, β-cell dysfunction, and apoptosis in OVX rats and increase ER stress-related proteins in β-cells, whereas RLX can reverse these adverse effects. The effects of RLX act mainly through estrogen receptor α; therefore, RLX may be a candidate drug for postmenopausal women with OA and OP.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lin Kang
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|