1
|
Yoshida K, Fukushima K, Sakai R, Uchiyama K, Takahira N, Ujihira M. A novel primary stability test method for artificial acetabular shells considering vertical load during level walking and shell position. PLoS One 2024; 19:e0296919. [PMID: 38421998 PMCID: PMC10903903 DOI: 10.1371/journal.pone.0296919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Uncemented acetabular shell primary stability is essential for optimal clinical outcomes. Push-out testing, rotation testing, and lever-out testing are major evaluation methods of primary stability between the shell and bone. However, these test methods do not consider shell loads during daily activity and shell installation angle. This study proposes a novel evaluation method of acetabular shell primary stability considering load during level walking and acetabular installation angles such as inclination and anteversion. To achieve this, a novel primary stability test apparatus was designed with a shell position of 40° acetabular inclination and 20° anteversion. The vertical load, corresponding to walking load, was set to 3 kN according to ISO 14242-1, which is the wear test standard for artificial hip joints. The vertical load was applied by an air cylinder controlled by a pressure-type electro-pneumatic proportional valve, with the vertical load value monitored by a load cell. Torque was measured when angular displacement was applied in the direction of extension during the application of vertical load. For comparison, we also measured torque using the traditional lever-out test. The novel primary stability test yielded significantly higher primary stabilities; 5.4 times greater than the lever-out test results. The novel primary stability test failure mode was more similar to the clinical failure than the traditional lever-out test. It is suggested that this novel primary stability test method, applying physiological walking loads and extension motions to the acetabular shell, better reflects in vivo primary stability than the traditional lever-out test.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Rina Sakai
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Katsufumi Uchiyama
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Naonobu Takahira
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masanobu Ujihira
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
2
|
Nishi M, Okano I, Yoshikawa Y, Tochio H, Usui Y, Inagaki K. Relationship Between Acetabular Hounsfield Unit Values and Periprosthetic Fractures in Cementless Total Hip Arthroplasty: A Matched Case-Control Study. Arthroplast Today 2022; 14:216-222.e1. [PMID: 35510068 PMCID: PMC9059077 DOI: 10.1016/j.artd.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Background The association between regional bone status around the acetabulum and the incidence of intraoperative acetabulum fractures has not been extensively studied. We investigated the association of Hounsfield unit (HU) values on computed tomography in the regions of the acetabulum with periprosthetic fractures. Methods We retrospectively reviewed records of 301 consecutive patients who underwent cementless total hip arthroplasty between October 2016 and December 2020. Using preoperative computed tomography taken in the 4 weeks preceding total hip arthroplasty, we measured HU values in 4 different acetabulum regions (anterior, medial, posterior, and superior). After identifying fracture cases, we identified a control group—matched in terms of sex, age, and preoperative diagnosis—selected in a 1:3 ratio among nonfracture patients treated in the same inclusive period. As the average HU values differed by region, we used the standardized value to compare fracture-site HUs. We ranked the standardized HU values for each acetabular site and compared the fracture site rank between the groups. Results Intraoperative acetabular fractures were observed in 10 hips (3.2%), occurring most frequently in the superior region (40%). The standardized HU values of the fracture site were statistically lower in the fracture group (P = .039). We compared the ranks of the standardized HUs of the fractured parts with those of the corresponding parts in the control group; the fracture site had a significantly lower standardized HU rank, indicating that fractures tended to occur in the relatively “weaker-than-expected” parts. Conclusions Periprosthetic fractures tended to occur at relatively weak parts of the acetabulum.
Collapse
Affiliation(s)
- Masanori Nishi
- Corresponding author. Department of Orthopedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan. Tel.: +81337848543.
| | | | | | | | | | | |
Collapse
|
3
|
Yun HH, Cheon SH, Im JT, Koh YY. Periprosthetic occult acetabular fracture: an unknown side effect of press-fit techniques in primary cementless total hip arthroplasty. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2021; 31:1411-1419. [PMID: 33585969 DOI: 10.1007/s00590-021-02894-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study sought to investigate the prevalence and risk factors of periprosthetic occult acetabular fracture occurring during cementless acetabular cup insertion in patients undergoing primary total hip arthroplasty (THA) and to assess the clinical consequences of these fractures. METHODS A total of 232 hips (n = 205 patients) were included in this study. A periprosthetic occult acetabular fracture was defined as that which was unrecognised intraoperatively and was undetectable on post-operative radiographs yet was successfully diagnosed on post-operative computed tomography (CT) images. Clinical (age, sex, body mass index, and preoperative diagnosis) and surgical (additional screw fixation, cup rim size, and cup type) variables were analysed to identify risk factors for periprosthetic occult acetabular fracture. RESULTS Sixteen (6.9%) periprosthetic occult intraoperative acetabular fractures were identified. In addition, one (0.4%) periprosthetic acetabular fracture was found during operation. The superolateral wall (9/16 hips; 56.3%) was the most frequent location. In addition, one (0.4%) periprosthetic acetabular fracture was found during operation. Male sex was the only factor associated with an increased risk for periprosthetic occult intraoperative acetabular fracture (odds ratio for male versus female sex: 4.28; p = 0.04). There was no significant association between cup type and the occurrence of periprosthetic occult acetabular fracture. All 16 hips with periprosthetic occult intraoperative acetabular fracture were healed at the final follow-up visit without the requirement for any additional surgical interventions. CONCLUSION The results of the current study suggest that periprosthetic occult acetabular fractures are common during press-fit acetabular cup insertion in primary THA. Surgeons should have a high index of suspicion and early CT imaging referral in male patients who present with unexplained early post-operative groin pain in primary THA using cementless acetabular cups.
Collapse
Affiliation(s)
- Ho Hyun Yun
- Department of Orthopaedic Surgery, Veterans Healthcare Service Medical Center, Seoul, 134791, South Korea.
| | - Seung Hee Cheon
- Department of Orthopaedic Surgery, Veterans Healthcare Service Medical Center, Seoul, 134791, South Korea
| | - Jung Taek Im
- Department of Orthopaedic Surgery, Veterans Healthcare Service Medical Center, Seoul, 134791, South Korea
| | - Yeong Yoon Koh
- Department of Orthopaedic Surgery, Veterans Healthcare Service Medical Center, Seoul, 134791, South Korea
| |
Collapse
|
4
|
Yoshida K, Fukushima K, Sakai R, Uchiyama K, Takahira N, Ujihira M. Influence of outer geometry on primary stability for uncemented acetabular shells in developmental dysplasia of the hip. Proc Inst Mech Eng H 2020; 235:65-72. [PMID: 32996400 DOI: 10.1177/0954411920960000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Excellent primary stability of uncemented acetabular shells is essential to obtain successful clinical outcomes. However, in the case of developmental dysplasia of the hip (DDH), aseptic loosening may be induced by instability due to a decrease of the contact area between the acetabular shell and host bone. The aim of this study was to assess the primary stability of two commercially-available acetabular shells, hemispherical and hemielliptical, in normal and DDH models. Synthetic bone was reamed using appropriate surgical reamers for each reaming condition (normal acetabular model). The normal acetabular model was also cut diagonally at 40° to create a dysplasia model. Stability of the acetabular components was evaluated by the lever-out test. In the normal acetabular model conditions, the maximum primary stabilities of hemispherical and hemielliptical shells were observed in the 1-mm under- and 1-mm over-reamed conditions, respectively, and the resulting stabilities were comparable. The lateral defect in the dysplasia model had an adverse effect on the primary stabilities of the two designs. The lever-out moment of the hemielliptical acetabular shell was 1.4 times greater than that of the hemispherical acetabular shell in the dysplasia model. The hemispherical shell is useful for the normal acetabular condition, and the hemielliptical shell for the severe dysplasia condition, in the context of primary stability.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Rina Sakai
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Katsufumi Uchiyama
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Naonobu Takahira
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Rehabilitation, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masanobu Ujihira
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
5
|
Comparison of Test Setups for the Experimental Evaluation of the Primary Fixation Stability of Acetabular Cups. MATERIALS 2020; 13:ma13183982. [PMID: 32916802 PMCID: PMC7559462 DOI: 10.3390/ma13183982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Sufficient primary fixation stability is the basis for the osseointegration of cementless acetabular cups. Several test methods have been established for determining the tilting moment of acetabular press-fit cups, which is a measure for their primary fixation stability. The central aim of this experimental study was to show the differences between the commonly used lever-out test method (Method 1) and the edge-load test method (Method 2) in which the cup insert is axially loaded (1 kN) during the tilting process with respect to the parameters, tilting moment, and interface stiffness. Therefore, using a biomechanical cup block model, a press-fit cup design with a macro-structured surface was pushed into three cavity types (intact, moderate superior defect, and two-point-pinching cavity) made of 15 pcf and 30 pcf polyurethane foam blocks (n = 3 per cavity and foam density combination), respectively. Subsequently, the acetabular cup was disassembled from the three artificial bone cavities using the lever-out and the edge-load test method. Tilting moments determined with Method 1 ranged from 2.72 ± 0.29 Nm to 49.08 ± 1.50 Nm, and with Method 2, they ranged from 41.40 ± 1.05 Nm to 112.86 ± 5.29 Nm. In Method 2, larger areas of abrasion were observed in the artificial bone cavity compared to Method 1. This indicates increased shear forces at the implant–bone interface in the former method. In conclusion, Method 1 simulates the technique used by orthopedic surgeons to assess the correct fit of the trial cup, while Method 2 simulates the tilting of the cup in the acetabular bone cavity under in situ loading with the hip resultant force.
Collapse
|
6
|
Time-dependent Viscoelastic Response of Acetabular Bone and Implant Seating during Dynamic Implantation of Press-fit Cups. Med Eng Phys 2020; 81:68-76. [PMID: 32507677 DOI: 10.1016/j.medengphy.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/04/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Deformation of an acetabular cup implant during cementless implantation is indicative of the radial compressive forces, and such of the initial implant fixation strength. Stress relaxation in the surrounding bone tissue following implantation could reduce the deformation of the cup and thus primary implant fixation. The aim of this study was therefore to determine the early shape change of the implanted cup immediately after implantation with different press-fit levels and whether recording the force during cup impaction can be used to estimate initial cup fixation. Cup implantations into porcine acetabulae (n=10) were performed using a drop tower. The force induced by the drop weight and cup seating after each impact was recorded. Deformation of the implanted cup was determined with strain gauges over a period of 10min. Lever-out torques were measured to assess the initial fixation strength. Stress relaxation in the bone caused a reduction in cup deformation of 13.52±4.06% after 1min and 29.34±5.11% after 10min. The fixation strength increased with a higher force magnitude during impaction (Rs2=0.810, p=0.037). Reduction of the radial compressive forces due to stress relaxation of the surrounding bone should be considered during press-fit cup implantation in order to compensate for the reduced fixation strength over time. In addition, recording the implantation force could help to estimate initial fixation strength.
Collapse
|
7
|
Fixation Stability of Uncemented Acetabular Cups With Respect to Different Bone Defect Sizes. J Arthroplasty 2020; 35:1720-1728. [PMID: 32063411 DOI: 10.1016/j.arth.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In total hip arthroplasty, acetabular press-fit cups require a proper bone stock for sufficient primary implant fixation. The presence of acetabular bone defects compromises the primary fixation stability of acetabular press-fit cups. The aim of the present study is to determine the fixation stability of a cementless acetabular cup regarding standardized bone defects in an experimental setup. METHODS An acetabular defect model was developed and transferred to a biomechanical cup-block model. The lack of superior cup coverage was divided into 4 stages of superior rim loss (33%, 50%, 67%, and 83%) in the anterior-posterior direction and into 4 stages of mediolateral wall absence (11%, 22%, 33%, and 50%). This resulted in 11 different defect cavities, which were compared to the intact cavity in push-in and lever-out tests of one press-fit cup design (56 mm outer diameter). Thereby, push-in force, lever-out moment, lever-out angle, and interface stiffness were determined. RESULTS The determined lever-out moments range from 15.53 ± 1.38 Nm (intact cavity) to 1.37 ± 0.54 Nm (83%/50% defect). Smaller defects (33%/11%, 33%/22%, and 50%/11%) reduce the lever-out moments by an average of 33.9% ± 2.8%. CONCLUSION The lack of mediolateral acetabular coverage of 50% was assessed as critical for cementless cup fixation, whereby the contact zone between implant and bone in the defect is lost. A lack of 20% to 30% mediolateral coverage appears to be acceptable for press-fit cup fixation in the presence of primary stability. A defect of 50%/50% was identified as the threshold for using additional fixation methods.
Collapse
|
8
|
Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. SENSORS 2020; 20:s20010254. [PMID: 31906330 PMCID: PMC6983091 DOI: 10.3390/s20010254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022]
Abstract
The total number of total hip arthroplasties is increasing every year, and approximately 10% of these surgeries are revisions. New implant design and surgical techniques are evolving quickly and demand accurate preclinical evaluation. The initial stability of cementless implants is one of the main concerns of these preclinical evaluations. A broad range of initial stability test methods is currently used, which can be categorized into two main groups: Load-to-failure tests and relative micromotion measurements. Measuring relative micromotion between implant and bone is recognized as the golden standard for implant stability testing as this micromotion is directly linked to the long-term fixation of cementless implants. However, specific custom-made set-ups are required to measure this micromotion, with the result that numerous studies opt to perform more straightforward load-to-failure tests. A custom-made micromotion test set-up for artificial acetabular bone models was developed and used to compare load-to-failure (implant push-out test) with micromotion and to assess the influence of bone material properties and press-fit on the implant stability. The results showed a high degree of correlation between micromotion and load-to-failure stability metrics, which indicates that load-to-failure stability tests can be an appropriate estimator of the primary stability of acetabular implants. Nevertheless, micromotions still apply as the golden standard and are preferred when high accuracy is necessary. Higher bone density resulted in an increase in implant stability. An increase of press-fit from 0.7 mm to 1.2 mm did not significantly increase implant stability.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
| | - Michiel Mulier
- Department of Orthopedics, University Hospital Leuven, 3000 Leuven, Belgium
| | - Wim Desmet
- Department of Mechanical Engineering, PMA Division, KU Leuven, 3000 Leuven, Belgium
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| | - Kathleen Denis
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Messer-Hannemann P, Campbell GM, Morlock MM. Deformation of acetabular press-fit cups: Influence of design and surgical factors. Clin Biomech (Bristol, Avon) 2019; 69:96-103. [PMID: 31325804 DOI: 10.1016/j.clinbiomech.2019.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deformation of acetabular cups when press-fitted into an undersized cavity is inevitable due to the inhomogeneous stiffness of acetabular bone. Thinner cups or screw holes might increase the risk of high cup deformation. The aim of this study was to examine the influence of cup design and liner assembly on the deformation response during cup implantation. METHODS Acetabular cups with different designs were implanted into polyurethane foam models simulating the anatomical situation with nominal press-fits of 1mm and without nominal press-fits (line-to-line). Deformations were determined using a tactile coordinate measuring machine. A 3D laser scanner was used to determine the contact conditions at the cup-cavity interface. Polyethylene and ceramic liners were assembled to the implanted cups and the influence of the insertion on the deformation response evaluated. Fixation strength of the cups was determined by push-out testing. FINDINGS Cup deformation increased with smaller wall thickness (P < 0.037) and screw holes (P < 0.001). Insertion of ceramic liners reduced the deformation (P < 0.001), whereas polyethylene liners adapted to the deformation of the implanted cups (P > 0.999). Thin-walled cups exhibited a higher fixation strength for similar implantation forces (P = 0.011). INTERPRETATION Thin-walled cups achieved higher fixation strengths and might be more bone-preserving. However, in combination with screw holes and high press-fit levels, wall thickness should be considered carefully to avoid excessive cup deformations leading to potential complications during liner assembly. Line-to-line insertion of thin-walled cups should be accompanied with a rough surface coating to minimize the loss of fixation strength due to the low press-fit fixation.
Collapse
Affiliation(s)
| | - Graeme M Campbell
- Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Michael M Morlock
- Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
10
|
Wiznia DH, Schwarzkopf R, Iorio R, Long WJ. Factors That Influence Bone-Ingrowth Fixation of Press-Fit Acetabular Cups. JBJS Rev 2019; 7:e2. [DOI: 10.2106/jbjs.rvw.18.00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Weißmann V, Ramskogler T, Schulze C, Bader R, Hansmann H. Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1052. [PMID: 30935040 PMCID: PMC6479851 DOI: 10.3390/ma12071052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development in implants such as acetabular cups using additive manufacturing techniques is playing an increasingly important role in the healthcare industry. METHOD This study compared the primary stability of four selectively laser-melted press-fit cups (Ti6Al4V) with open-porous, load-bearing structural elements on the surface. The aim was to assess whether the material of the artificial bone stock affects the primary stability of the acetabular cup. The surface structures consist of repeated open-porous, load-bearing elements orthogonal to the acetabular surface. Experimental pull-out and lever-out tests were performed on exact-fit and press-fit cups to evaluate the primary stability of the cups in different synthetic bone substitutes. The acetabular components were placed in three different commercially available synthetic materials (ROHACELL-IGF 110, SikaBlock M330, Sawbones Solid Rigid). Results & conclusions: Within the scope of the study, it was possible to show the differences in fixation strength between the tested acetabular cups depending on their design, the structural elements used, and the different bone substitute material. In addition, functional correlations could be found which provide a qualitative reference to the material density of the bone stock and the press-fit volume of the acetabular cups.
Collapse
Affiliation(s)
- Volker Weißmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Tim Ramskogler
- Department Industrial Engineering, Technical University of Applied Sciences, Hetzenrichter Weg 15, 92637 Weiden, Germany.
| | - Christian Schulze
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Harald Hansmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
| |
Collapse
|
12
|
Schulze C, Vogel D, Sander M, Bader R. Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability. Comput Methods Biomech Biomed Engin 2018; 22:25-37. [PMID: 30449160 DOI: 10.1080/10255842.2018.1524884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polyurethane (PU) foam is a material often used in biomechanical experiments and demands for the definition of crushable foam plasticity (CFP) in numerical simulations of the primary stability and deformation of implants, to describe the crushing behaviour appropriately. Material data of PU foams with five different densities (10-40 pounds per cubic foot were ascertained experimentally in uniaxial compression test and used to calibrate CFP models for finite element modelling. Additionally, experimental and numerical deformation, push-out and lever-out tests of press-fit acetabular cups were carried out to assess the influence of the chosen material definition (linear elastic and CFP) on the numerical results. Comparison of the experimentally and numerically determined force-displacement curves of the uniaxial compression test showed a mean deviation of less than 3%. In primary stability testing, the deviation between the experimental and numerical results was in a range of 0%-27% for CFP modelling and 64%-341% for the linear elastic model. The material definition selected, highly influenced the numerical results in the current study. The use of a CFP model is recommended for further numerical simulations, when a deformation of the foam beyond the yield strength is likely to occur.
Collapse
Affiliation(s)
- Christian Schulze
- a Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics , University Medicine Rostock , Rostock , Germany
| | - Danny Vogel
- a Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics , University Medicine Rostock , Rostock , Germany
| | - Manuela Sander
- b Department of Structural Mechanics , University of Rostock , Rostock , Germany
| | - Rainer Bader
- a Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics , University Medicine Rostock , Rostock , Germany
| |
Collapse
|
13
|
Ziebart J, Fan S, Schulze C, Kämmerer PW, Bader R, Jonitz-Heincke A. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018; 7:187-195. [PMID: 29682285 PMCID: PMC5895940 DOI: 10.1302/2046-3758.72.bjr-2017-0228.r1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Objectives Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1.
Collapse
Affiliation(s)
- J Ziebart
- Department of Orthopaedics, Rostock University Medical Center, Rostock 18057, Germany
| | - S Fan
- Department of Orthopaedics, Rostock University Medical Center, Rostock 18057, Germany
| | - C Schulze
- Department of Orthopaedics, Rostock University Medical Center, Rostock 18057, Germany
| | - P W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock 18057, Germany
| | - R Bader
- Department of Orthopaedics, Rostock University Medical Center, Rostock 18057, Germany
| | - A Jonitz-Heincke
- Department of Orthopaedics, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
14
|
Hasegawa K, Kabata T, Kajino Y, Inoue D, Tsuchiya H. Periprosthetic Occult Fractures of the Acetabulum Occur Frequently During Primary THA. Clin Orthop Relat Res 2017; 475:484-494. [PMID: 27800574 PMCID: PMC5213950 DOI: 10.1007/s11999-016-5138-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Periprosthetic fractures of the acetabulum occurring during primary THA are rare. Periprosthetic occult fractures are defined as those not identified by the surgeon during the procedure which might be missed on a routine postoperative radiograph. However, it is unclear how frequently these fractures occur and whether their presence affects functional recovery. QUESTIONS/PURPOSES In this study, using routine CT scans that were obtained as part of another primary hip arthroplasty study protocol, we retrospectively assessed (1) the prevalence of occult fractures of the acetabulum occurring during primary THA, (2) the location of occult fractures of the acetabulum during THA, and (3) risk factors contributing to such occult fractures. METHODS Between 2004 and 2013, our institute performed 585 primary THAs (cementless or hybrid) in 494 patients with DICOM pre- and postoperative CT; during the period in question, all patients undergoing THA underwent CT before and after surgery. Preoperative CT images were taken as part of a CT-based three-dimensional templating software and navigation system. Postoperative CT images were taken an average of 1 week after surgery as part of a different protocol to evaluate cup position, restoration of leg length and offset, volume of postoperative hematoma to assess anticoagulation effects after THA, and fractures that were not found on routine postoperative radiographs (which we defined as occult fractures). Patients with a history of prior pelvic osteotomy, trauma, and infection were excluded (88 patients/99 hips); 406 patients (102 males and 304 females; 486 hips) form the basis of this report. The mean age of the patients was 60 ± 11 years, with a mean BMI of 23 ± 4 kg/m2. The mean followup of the patients with periprosthetic fracture of the acetabulum was 58 ± 28 months (range, 12-131 months). Potential risk factors for occult acetabular fracture including age, sex, BMI, preoperative diagnosis, additional dome screw fixation, composition and size of each cup, and acetabular design were examined in multivariate analysis. Acetabular component designs were categorized as true hemispheric, peripheral self-locking, and elliptical; during the period in question the indications for each cup design were based on the brand of stem used. Comparison between preoperative and postoperative CT images was done to detect the fractures. Patients with fractures identified during surgery were treated with additional dome screw fixation and a 3-week period of nonweightbearing. Patients with occult fractures in this series did not receive additional treatment as we had confirmed secure fixation of the cup during surgery. RESULTS Occult fractures occurred in 41 hips (8.4%); periprosthetic fractures of the acetabulum were seen during surgery in an additional two hips (0.4%). The superolateral wall was the most frequent location for occult fractures of the acetabulum. After controlling for relevant confounding variables, only the use of peripheral self-locking cups was associated with an increased risk of occult fracture (odds ratio [OR], 2.6 compared with hemispheric cups; 95% CI, 1.2-5.6; p < 0.05). All patients with occult fractures showed bone ingrowth fixation at the final followup, without any additional surgical intervention. CONCLUSIONS Periprosthetic occult fractures of the acetabulum may occur relatively frequently during press-fit impaction. We observed a higher rate of fractures associated with the use of peripheral self-locking components. Occult acetabular fractures not detected on routine postoperative plain films may be ignored if secure fixation of the cup has been confirmed during the operation. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
15
|
Crosnier EA, Keogh PS, Miles AW. A novel method to assess primary stability of press-fit acetabular cups. Proc Inst Mech Eng H 2014; 228:1126-34. [DOI: 10.1177/0954411914557714] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Initial stability is an essential prerequisite to achieve osseointegration of press-fit acetabular cups in total hip replacements. Most in vitro methods that assess cup stability do not reproduce physiological loading conditions and use simplified acetabular models with a spherical cavity. The aim of this study was to investigate the effect of bone density and acetabular geometry on cup stability using a novel method for measuring acetabular cup micromotion. A press-fit cup was inserted into Sawbones® foam blocks having different densities to simulate normal and osteoporotic bone variations and different acetabular geometries. The stability of the cup was assessed in two ways: (a) measurement of micromotion of the cup in 6 degrees of freedom under physiological loading and (b) uniaxial push-out tests. The results indicate that changes in bone substrate density and acetabular geometry affect the stability of press-fit acetabular cups. They also suggest that cups implanted into weaker, for example, osteoporotic, bone are subjected to higher levels of micromotion and are therefore more prone to loosening. The decrease in stability of the cup in the physiological model suggests that using simplified spherical cavities to model the acetabulum over-estimates the initial stability of press-fit cups. This novel testing method should provide the basis for a more representative protocol for future pre-clinical evaluation of new acetabular cup designs.
Collapse
Affiliation(s)
- Emilie A Crosnier
- Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Patrick S Keogh
- Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Anthony W Miles
- Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK
| |
Collapse
|