1
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
2
|
Aladily TN, Qiqieh JF, Alshorman A, Alhyari S, Khader M. PAX5 and TDT-Negative B-Acute Lymphoblastic Leukemia with Unusual Genetic Mutations: A Case Report. Avicenna J Med 2022; 12:186-190. [PMID: 36570429 PMCID: PMC9771627 DOI: 10.1055/s-0042-1758387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-acute lymphoblastic leukemia (B-ALL) is commonly encountered in clinical practice. Patients present with increased percentage of lymphoblasts in bone marrow and/or peripheral blood. Immunophenotypic study by flow cytometry or immunohistochemistry is essential to establish the diagnosis. Paired box-5 (PAX5) is a B cell lineage protein and terminal deoxynucleotidyl transferase (TDT) is an immature marker, both of which are routinely tested in the pathologic workup of acute leukemia. In this report, we describe a case of B-ALL in a 37-year-old woman in which both PAX5 and TDT were negative. Next-generation sequencing test detected mutations in DNA methyltransferase 3 α and Fms related receptor tyrosine kinase 3 genes, which are frequently mutated in acute myeloid leukemia rather than B-ALL. The constellation of these rare findings in a single case signifies the importance of examining a wide panel of markers when the diagnosis of ALL is suspected.
Collapse
Affiliation(s)
- Tariq N. Aladily
- Department of Hematopathology, The University of Jordan, Amman, Jordan,Address for correspondence Tariq N. Aladily, MD Department of Hematopathology, The University of JordanAmman 11814Jordan
| | - Jamil F. Qiqieh
- Department of Hematopathology, The University of Jordan, Amman, Jordan
| | - Alaa Alshorman
- Department of Hematology and Oncology, The University of Jordan, Amman, Jordan
| | - Salem Alhyari
- Department of Hematology and Oncology, The University of Jordan, Amman, Jordan
| | - Majd Khader
- Department of Pathology, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
3
|
Baptista MJ, Tapia G, Muñoz‐Marmol A, Muncunill J, Garcia O, Montoto S, Gribben JG, Calaminici M, Martinez A, Veloza L, Martínez‐Trillos A, Aldamiz T, Menarguez J, Terol M, Ferrandez A, Alcoceba M, Briones J, González‐Barca E, Climent F, Muntañola A, Moraleda J, Provencio M, Abrisqueta P, Abella E, Colomo L, García‐Ballesteros C, Garcia‐Caro M, Sancho J, Ribera J, Mate J, Navarro J. Genetic and phenotypic characterisation of HIV-associated aggressive B-cell non-Hodgkin lymphomas, which do not occur specifically in this population: diagnostic and prognostic implications. Histopathology 2022; 81:826-840. [PMID: 36109172 PMCID: PMC9828544 DOI: 10.1111/his.14798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023]
Abstract
The frequency of aggressive subtypes of B-cell non-Hodgkin lymphoma (B-NHL), such as high-grade B-cell lymphomas (HGBL) with MYC and BCL2 and/or BCL6 rearrangement (HGBL-DH/TH) or Burkitt-like lymphoma (BL) with 11q aberration, is not well known in the HIV setting. We aimed to characterise HIV-associated aggressive B-NHL according to the 2017 WHO criteria, and to identify genotypic and phenotypic features with prognostic impact. Seventy-five HIV-associated aggressive B-NHL were studied by immunohistochemistry (CD10, BCL2, BCL6, MUM1, MYC, and CD30), EBV-encoded RNAs (EBERs), and fluorescence in situ hybridisation (FISH) to evaluate the status of the MYC, BCL2, and BCL6 genes and chromosome 11q. The 2017 WHO classification criteria and the Hans algorithm, for the cell-of-origin classification of diffuse large B-cell lymphomas (DLBCL), were applied. In DLBCL cases, the frequencies of MYC and BCL6 rearrangements (14.9 and 27.7%, respectively) were similar to those described in HIV-negative patients, but BCL2 rearrangements were infrequent (4.3%). MYC expression was identified in 23.4% of DLBCL cases, and coexpression of MYC and BCL2 in 13.0%, which was associated with a worse prognosis. As for BL cases, the expression of MUM1 (30.4%) conferred a worse prognosis. Finally, the prevalence of HGBL-DH/TH and BL-like with 11q aberration are reported in the HIV setting. The phenotypic and genotypic characteristics of HIV-associated aggressive B-NHL are similar to those of the general population, except for the low frequency of BCL2 rearrangements in DLBCL. MYC and BCL2 coexpression in DLBCL, and MUM-1 expression in BL, have a negative prognostic impact on HIV-infected individuals.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Ana‐María Muñoz‐Marmol
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Josep Muncunill
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Olga Garcia
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Silvia Montoto
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - John G Gribben
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Maria Calaminici
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Antonio Martinez
- Department of Pathology, Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | - Luis Veloza
- Department of Pathology, Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | | | - Teresa Aldamiz
- Department of Infectious DiseasesHospital Gregorio MarañónMadridSpain
| | | | - María‐José Terol
- Department of Hematology and OncologyHospital Clínic Universitari de ValènciaValenciaSpain
| | - Antonio Ferrandez
- Department of PathologyHospital Clínic Universitari de ValènciaValenciaSpain
| | - Miguel Alcoceba
- Department of HematologyHospital Universitario de Salamanca (HUS/IBSAL), CIBERONC and Centro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Javier Briones
- Department of Hematology, Hospital de la Santa Creu i Sant PauJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Eva González‐Barca
- Department of HematologyICO‐Hospital Duran i ReynalsL'Hospitalet de LlobregatSpain
| | - Fina Climent
- Department of PathologyHospital Universitari de Bellvitge‐IDIBELL, L'Hospitalet de LlobregatBadalonaSpain
| | - Ana Muntañola
- Department of Clinical HematologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - José‐María Moraleda
- Department of HematologyHospital Clinico Universitario Virgen de la ArrixacaMurciaSpain
| | - Mariano Provencio
- Department of Medical OncologyHospital Universitario Puerta De HierroMajadahondaSpain
| | - Pau Abrisqueta
- Department of HematologyHospital Vall d'HebrónBarcelonaSpain
| | | | - Lluis Colomo
- Department of PathologyHospital del MarBarcelonaSpain
| | | | | | - Juan‐Manuel Sancho
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Josep‐Maria Ribera
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - José‐Luis Mate
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - José‐Tomas Navarro
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| |
Collapse
|
4
|
Mao J, Xue L, Wang H, Zhu Y, Wang J, Zhao L. A New Treatment Strategy for Early T-Cell Precursor Acute Lymphoblastic Leukemia: A Case Report and Literature Review. Onco Targets Ther 2021; 14:3795-3802. [PMID: 34168464 PMCID: PMC8219029 DOI: 10.2147/ott.s312494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive and extremely fatal subtype of T-cell acute lymphoblastic leukemia (T-ALL), characterized by the similar transcriptional and immunophenotypic profiles to those of early T-cell precursors and positive expressions of myeloid antigens. Besides, the gene expression profile in ETP-ALL is similar to that in myeloid malignancies. The clinical characteristics, treatments and prognoses of ETP-ALL are significantly heterogeneous. In the present study, we reported a 43-year-old female patient who lacked terminal deoxynucleotidyl transferase (TDT) expression in immunophenotype and displayed mutations of fms-like tyrosine kinase-internal tandem duplication (FLT3-ITD), paired-box domain 5 (PAX5) and SH2B adaptor protein 3 (SH2B3) (PAX5 and SH2B3, the genes critical to B cell identity and function), which represent myeloid and precursor B-lineage associated gene mutations, respectively. It was a rare T-ALL or T-lineage case. Because of multiple poor prognostic factors in this case, conventional induction regimens, like hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, dexamethasone), were invalid. The patient showed inadequate response, suggesting that this treatment was not employed on the basis of the immunophenotype. FLAG-IDA regimen (fludarabine, cytarabine [Ara-C], granulocyte-colony stimulating factor [G-CSF] and idarubicin), which is usually applied to eliminate leukemia cells, was administered combining with sorafenib as an effective induction chemotherapy. The case achieved long-term survival following the allogeneic hematopoietic stem cell transplantation (allo-HSCT). We recommend that adult ETP-ALL patients can be treated with a myeloid-oriented chemotherapy (as frontline induction treatment) along with gene-targeting inhibitors, followed by allo-HSCT.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| | - Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| | - Haiqing Wang
- Department of Laboratory medicine, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| | - Yuanxin Zhu
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People's Republic of China
| |
Collapse
|
5
|
Silveira HA, Sousa LM, Silva EV, Almeida LKY, Sverzut CE, Trivellato AE, León JE. Primary intraosseous CD9-positive B-cell lymphoblastic lymphoma of the maxilla affecting a pediatric patient: Immunohistochemical and in situ hybridization analysis. Oral Oncol 2020; 108:104910. [PMID: 32771332 DOI: 10.1016/j.oraloncology.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Lymphoblastic lymphoma (LBL) is a clinically aggressive disease, representing approximately 2% of all non-Hodgkin lymphoma cases. In the oral and maxillofacial (OMF) region, approximately 39 cases, diagnosed as LBL, acute lymphoblastic leukemia (ALL) or ALL/LBL, have been reported to date. Noteworthy, the CD9 expression, which indicates a poor outcome in ALL, has not been reported in LBL and lymphoblastic neoplasms of the OMF region. Herein, we report an additional maxillary intraosseous B-cell LBL, affecting a 14-year-old girl, which also showed positivity for CD9, Bcl-6 and MUM1/IRF4. Aiming at diagnostic and prognostic criteria, further studies focusing CD9 expression in LBL is recommended.
Collapse
Affiliation(s)
- Heitor Albergoni Silveira
- Oral Medicine, Department of Diagnosis and Surgery, Araraquara Dental School, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil; Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Moura Sousa
- Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evânio Vilela Silva
- Oral Medicine, Department of Diagnosis and Surgery, Araraquara Dental School, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil; Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lana Kei Yamamoto Almeida
- Department of Pediatric Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cassio Edvard Sverzut
- Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre Elias Trivellato
- Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Tibaldi E, Gnudi F, Panzacchi S, Mandrioli D, Vornoli A, Manservigi M, Sgargi D, Falcioni L, Bua L, Belpoggi F. Identification of aspartame-induced haematopoietic and lymphoid tumours in rats after lifetime treatment. Acta Histochem 2020; 122:151548. [PMID: 32622430 DOI: 10.1016/j.acthis.2020.151548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Lymphomas and leukaemias involving the lung have in some cases been hard to distinguish from respiratory tract infection in Sprague-Dawley (SD) rats from long-term bioassays. In order to differentiate between tumours and immune cell infiltrates, updated pathological criteria and nomenclature were used and immunohistochemistry (IHC) was applied to haematopoietic and lymphoid tissue tumours (HLTs) in the original prenatal long-term Aspartame (APM) study performed by the Ramazzini Institute (RI). All 78 cases of HLTs from treated and control groups were re-examined based on light microscopic morphological characteristics and subjected to a panel of IHC markers including Ki67, CD3, PAX5, CD20, CD68, TdT, CD45, CD14 and CD33. The analysis confirmed the diagnoses of HLTs in 72 cases, identified 3 cases of preneoplastic lesions (lymphoid hyperplasia), and categorized 3 cases as inflammatory lesions. A statistically significant increase in total HLTs (p = 0.006), total lymphomas (p = 0.032) and total leukaemias (p = 0.031) in treated female rats was confirmed (high dose vs control), and a statistically significant linear trend for each HLT type was also observed. After the HLT cases re-evaluation, the results obtained are consistent with those reported in the previous RI publication and reinforce the hypothesis that APM has a leukaemogenic and lymphomatogenic effect.
Collapse
|
7
|
Marques-Piubelli ML, Salas YI, Pachas C, Becker-Hecker R, Vega F, Miranda RN. Epstein-Barr virus-associated B-cell lymphoproliferative disorders and lymphomas: a review. Pathology 2019; 52:40-52. [PMID: 31706670 DOI: 10.1016/j.pathol.2019.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
In this review, we focus on B-cell lymphoproliferative disorders (LPDs) and lymphomas associated with Epstein-Barr virus (EBV). In some of these diseases-such as EBV-positive diffuse large B-cell lymphoma (DLBCL), not otherwise specified-virus detection is required for the diagnosis, while in others its detection is not necessary for diagnosis. EBV infection has three main latency patterns (types III, II, and I). Different latency patterns are found in different LPD types and are related to the host immune system status. For each of the LPDs/lymphomas, we discuss the clinical presentation, epidemiology, pathology, immunophenotype, and genetic or molecular basis. We provide data for a better understanding of the relationships among the discussed diseases and other information that can be useful in differential diagnosis. Not included in this review are classic Hodgkin lymphoma and some specific variants of DLBCL, as these entities are discussed in separate reviews in this issue.
Collapse
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yessenia I Salas
- Departamento de Patologia, Hospital Cayetano Heredia, Lima, Peru
| | - Carlos Pachas
- Departamento de Patologia, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | | | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
8
|
O'Connor T, Zhou X, Kosla J, Adili A, Garcia Beccaria M, Kotsiliti E, Pfister D, Johlke AL, Sinha A, Sankowski R, Schick M, Lewis R, Dokalis N, Seubert B, Höchst B, Inverso D, Heide D, Zhang W, Weihrich P, Manske K, Wohlleber D, Anton M, Hoellein A, Seleznik G, Bremer J, Bleul S, Augustin HG, Scherer F, Koedel U, Weber A, Protzer U, Förster R, Wirth T, Aguzzi A, Meissner F, Prinz M, Baumann B, Höpken UE, Knolle PA, von Baumgarten L, Keller U, Heikenwalder M. Age-Related Gliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell 2019; 36:250-267.e9. [PMID: 31526758 DOI: 10.1016/j.ccell.2019.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.
Collapse
Affiliation(s)
- Tracy O'Connor
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Xiaolan Zhou
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany; Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jan Kosla
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Arlind Adili
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maria Garcia Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Elena Kotsiliti
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Dominik Pfister
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Anna-Lena Johlke
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Ankit Sinha
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Markus Schick
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Richard Lewis
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Bastian Seubert
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Donato Inverso
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Wenlong Zhang
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Petra Weihrich
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Katrin Manske
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Alexander Hoellein
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Gitta Seleznik
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Juliane Bremer
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Sabine Bleul
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florian Scherer
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Wirth
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Baumann
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Uta E Höpken
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Ulrich Keller
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Hematology and Oncology, Charité - Universitätsmedizin Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Felisberto R, Matos J, Alves M, Cabeçadas J, Henriques J. Evaluation of Pax5 expression and comparison with BLA.36 and CD79αcy in feline non-Hodgkin lymphoma. Vet Comp Oncol 2016; 15:1257-1268. [PMID: 27549353 DOI: 10.1111/vco.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
Paired box gene 5 (Pax5) is a widely used B-cell marker for human and canine non-Hodgkin's lymphoma (nHL); however, in the literature there is only one case report using Pax5 in a cat B-cell lymphoma. The purposes of this study were to investigate the expression and detection of B-cell specific activator protein (BSAP) using a monoclonal anti-Pax5 antibody in feline nHL (FnHL) tissue samples to evaluate its diagnostic relevance as a B-cell marker. A total of 45 FnHL samples in 45 cats were evaluated. B-cell lymphoma was the most common immunophenotype (51.1%) for all the samples and T-cell the most common immunophenotype (64.3%) for the gastrointestinal (GI) form. Pax5 stained 82.6% of all B-cell lymphomas and no expression was found in any of the T-cell lymphomas. Anti-Pax5 antibody staining in FnHL is similar to that reported in human and canine counterparts and may offer an excellent B-cell marker in cats.
Collapse
Affiliation(s)
- R Felisberto
- Hospital Veterinário Berna, Onevet Group, Lisbon, Portugal
| | - J Matos
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
| | - M Alves
- Research Center for Biosciences & Health Technologies (CBIOS) / Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - J Cabeçadas
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
| | - J Henriques
- Hospital Veterinário Berna, Onevet Group, Lisbon, Portugal
| |
Collapse
|
10
|
Johri N, Patne SCU, Tewari M, Kumar M. Diagnostic Utility of PAX5 in Hodgkin and Non-Hodgkin Lymphoma: A Study from Northern India. J Clin Diagn Res 2016; 10:XC04-XC07. [PMID: 27656544 DOI: 10.7860/jcdr/2016/21476.8352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/21/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION PAX5 is an immunomarker of B-cell origin and useful in the diagnosis of lymphoma. There is hardly any study on PAX5 expression in Indian patients with lymphoma. AIM To evaluate the diagnostic utility of PAX5 as an adjunct immunohistochemical marker in the diagnosis of Hodgkin Lymphoma (HL) and Non-Hodgkin Lymphoma (NHL). MATERIALS AND METHODS Immunohistochemistry was performed against CD20, CD3, CD15, CD30, and PAX5 on formalin fixed paraffin embedded tissue of 71 cases of lymphoma and CD20, CD3 and PAX5 in control samples of reactive lymph nodes. Frequency, mean values, and percentage were calculated. Fisher's-exact test and test for analysis of variance were applied. RESULT For 24 cases of HL and 47 cases of NHL, the mean age of patients was 17.6±14.8 years and 44.1±21.6 years, respectively. The male: female ratio for both HL and NHL were 1.7:1. Among NHL cases, the numbers of B-cell and T-cell types were 39/47 (83%) and 8/47 (17%), respectively. In comparison to control samples, PAX5+ expression was seen in 23/24 (95.8%) cases of HL (p=1.000) and 32/39 (82%) cases of B-NHL (p=0.0834). All the cases of T-NHL showed negative expression of PAX5 (p<0.0001). Analysis of variance between NHL, HL and control samples was statistically significant (p<0.0001). CONCLUSION PAX5 staining between control samples and cases of classical HL and B-NHL was statistically not significant, whereas, statistically significant difference was observed with T-NHL. Thus, PAX5 may be used as an adjunct marker in the diagnosis of classical HL and B-NHL.
Collapse
Affiliation(s)
- Nidhi Johri
- Junior Resident, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| | - Shashikant C U Patne
- Assistant Professor, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| | - Mallika Tewari
- Associate Professor and Head, Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| | - Mohan Kumar
- Professor, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Wagener R, Aukema SM, Schlesner M, Haake A, Burkhardt B, Claviez A, Drexler HG, Hummel M, Kreuz M, Loeffler M, Rosolowski M, López C, Möller P, Richter J, Rohde M, Betts MJ, Russell RB, Bernhart SH, Hoffmann S, Rosenstiel P, Schilhabel M, Szczepanowski M, Trümper L, Klapper W, Siebert R. ThePCBP1gene encoding poly(rc) binding protein i is recurrently mutated in Burkitt lymphoma. Genes Chromosomes Cancer 2015; 54:555-64. [DOI: 10.1002/gcc.22268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Sietse M. Aukema
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Matthias Schlesner
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics; Heidelberg Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Birgit Burkhardt
- Non-Hodgkin Lymphoma Berlin-Frankfurt-Münster Group Study Center, Department of Pediatric Hematology and Oncology, University Children's Hospital; Münster Germany
| | - Alexander Claviez
- Department of Pediatrics; University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University; Kiel Germany
| | - Hans G. Drexler
- Leibniz-Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH; Braunschweig Germany
| | - Michael Hummel
- Institute of Pathology, Campus Benjamin Franklin, Charité-Universitätsmedizin; Berlin Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Cristina López
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Peter Möller
- Institute of Pathology, Universitätsklinikum Ulm; Ulm Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology; Justus Liebig University; Giessen Germany
| | - Matthew J. Betts
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Robert B. Russell
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Stephan H. Bernhart
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Steve Hoffmann
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Monika Szczepanowski
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology; Georg-August University of Göttingen; Germany
| | - Wolfram Klapper
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | | |
Collapse
|
12
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
13
|
The role of Pax5 in leukemia: diagnosis and prognosis significance. Med Oncol 2014; 32:360. [PMID: 25428382 DOI: 10.1007/s12032-014-0360-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
Pax5 transcription factor, also known as B-cell specific activator protein (BSAP), plays a dual role in the hematopoietic system. Pax5 expression is essential in B-cell precursors for normal differentiation and maturation of B-cells. On the other hand, it inhibits the differentiation and progress toward other lineages. The expression of this factor is involved in several aspects of B-cell differentiation, including commitment, immunoglobulin gene rearrangement, BCR signal transduction and B-cell survival, so that the deletion or inactivating mutations of Pax5 cause cell arrest in Pro-B-cell stage. In recent years, point mutations, deletions and various rearrangements in Pax5 gene have been reported in several types of human cancers. However, no clear relationship has been found between these aberrations and disease prognosis. Specific expression of Pax5 in B-cells can raise it as a marker for the diagnosis and differentiation of B-cell leukemias and lymphomas as well as account for remission or relapse. Extensive studies on Pax5 along with other genes and immunomarkers are necessary for decisive results in this regard.
Collapse
|
14
|
Arias-Mendoza F, Payne GS, Zakian K, Stubbs M, O'Connor OA, Mojahed H, Smith MR, Schwarz AJ, Shukla-Dave A, Howe F, Poptani H, Lee SC, Pettengel R, Schuster SJ, Cunningham D, Heerschap A, Glickson JD, Griffiths JR, Koutcher JA, Leach MO, Brown TR. Noninvasive phosphorus magnetic resonance spectroscopic imaging predicts outcome to first-line chemotherapy in newly diagnosed patients with diffuse large B-cell lymphoma. Acad Radiol 2013; 20:1122-9. [PMID: 23931426 PMCID: PMC3810177 DOI: 10.1016/j.acra.2013.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/10/2013] [Accepted: 04/30/2013] [Indexed: 02/05/2023]
Abstract
RATIONALE AND OBJECTIVES Based on their association with malignant proliferation, using noninvasive phosphorus MR spectroscopic imaging ((31)P MRSI), we measured the tumor content of the phospholipid-related phosphomonoesters (PME), phosphoethanolamine and phospholcholine, and its correlation with treatment outcome in newly diagnosed patients with diffuse large B-cell lymphoma (DLBCL) receiving standard first-line chemotherapy. EXPERIMENTAL DESIGN The PME value normalized to nucleoside triphosphates (PME/NTP) was measured using (31)P MRSI in tumor masses of 20 patients with DLBCL before receiving standard first-line chemotherapy. Response at 6 months was complete in 13 patients and partial in seven. Time to treatment failure (TTF) was ≤11 months in eight patients, from 18 to 30 months in three, and ≥60 months in nine. RESULTS On a t test, the pretreatment tumor PME/NTP mean value (SD, n) of patients with a complete response at 6 months was 1.42 (0.41, 13), which was significantly different from the value of 2.46 (0.40, 7) in patients with partial response (P < .00001). A Fisher test significantly correlated the PME/NTP values with response at 6 months (sensitivity and specificity at 0.85, P < .004) while a Cox proportional hazards regression significantly correlated the PME/NTP values with TTF (hazard ratio = 5.21, P < .02). A Kaplan-Meier test set apart a group entirely composed of patients with TTF ≤ 11 months (hazard ratio = 8.66, P < .00001). CONCLUSIONS The pretreatment tumor PME/NTP values correlated with response to treatment at 6 months and time to treatment failure in newly diagnosed patients with DLBCL treated with first-line chemotherapy, and therefore they could be used to predict treatment outcome in these patients.
Collapse
Affiliation(s)
- Fernando Arias-Mendoza
- Department of Radiology, Columbia University, 710 W 168th St., Neurological Institute Basement, Room B-057, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Morgan EA, Pozdnyakova O, Nascimento AF, Hirsch MS. PAX8 and PAX5 are differentially expressed in B-cell and T-cell lymphomas. Histopathology 2012; 62:406-13. [PMID: 23163626 DOI: 10.1111/his.12020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The purpose of this study was to evaluate the expression patterns of B-cell specific activator protein (BSAP)/PAX5 and PAX8 in a wide variety of B-cell and T-cell neoplasms. METHODS AND RESULTS A wide range of B-cell and T-cell neoplasms were subjected to immunohistochemical staining with antibodies against BSAP/PAX5 and PAX8 (polyclonal, pPAX8; monoclonal, mPAX8). Ten non-neoplastic lymph node specimens were examined with the same panel. All of the tested neoplastic and non-neoplastic B-cells reacted with the BSAP/PAX5 and pPAX8 antibodies, but did not show reactivity with the mPAX8 antibody. All tested T-cell neoplasms were negative using the BSAP/PAX5, pPAX8 and mPAX8 antibodies. CONCLUSIONS This is the first study to show the absence of reactivity to an mPAX8 antibody in an expanded panel of B-cell lymphomas as well as in a variety of T-cell neoplasms. In contrast to the mPAX8 antibody, the pPAX8 antibody shows nuclear positivity in non-neoplastic B cells and mature B-cell neoplasms; however, this expression is probably a result of cross-reactivity with PAX5. Given that many laboratories use the pPAX8 antibody, a clear understanding of the differential staining patterns is necessary. The differential diagnosis of a B-cell lymphoma should be entertained when a pPAX8-positive, epithelial marker-negative neoplasm of uncertain primary origin is encountered.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from October 2009 to January 2010. J Hematop 2011; 3:47-58. [PMID: 21633487 DOI: 10.1007/s12308-010-0060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
17
|
Bheda A, Yue W, Gullapalli A, Shackelford J, Pagano JS. PU.1-dependent regulation of UCH L1 expression in B-lymphoma cells. Leuk Lymphoma 2011; 52:1336-47. [PMID: 21504384 DOI: 10.3109/10428194.2011.562571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Elevated levels of ubiquitin C-terminal hydrolase L1 (UCH L1) have been detected in a variety of malignancies, and recent studies show the oncogenic capacity of overexpressed UCH L1 in vivo in animal models. Here we demonstrate that expression of endogenous UCH L1 is significantly higher in B-lymphoma cells than in transformed cells of epithelial and fibroblastic origin. The specific hematopoietic transcription factor PU.1 induces UCH L1 expression through direct activation of the uch l1 promoter. Using chromatin immunoprecipitation (ChIP) assays and direct mutagenesis we identified PU.1 binding sites on the uch l1 promoter, at least three of which are involved in this activation. We also show that the viral transcriptional co-activator EBNA2 dramatically increases PU.1-dependent up-regulation of endogenous UCH L1 expression. Finally, inhibition of PU.1 expression with specific shRNA resulted in reduction of UCH L1 mRNA and protein levels in Epstein-Barr virus (EBV)-transformed B-cells. We propose that the ubiquitin-editing enzyme UCH L1 is a multifunctional pro-oncogenic factor involved in development and progression of certain lymphoid malignancies, including EBV-associated lymphomas.
Collapse
Affiliation(s)
- Anjali Bheda
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|