1
|
Oku H, Iqbal A, Oogai S, Inafuku M, Mutanda I. Relationship between Cumulative Temperature and Light Intensity and G93 Parameters of Isoprene Emission for the Tropical Tree Ficus septica. PLANTS (BASEL, SWITZERLAND) 2024; 13:243. [PMID: 38256797 PMCID: PMC10820733 DOI: 10.3390/plants13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The most widely used isoprene emission algorithm, G93 formula, estimates instantaneous leaf-level isoprene emission using the basal emission factor and light and temperature dependency parameters. The G93 parameters have been suggested to show variation depending on past weather conditions, but no study has closely examined the relationship between past meteorological data and the algorithm parameters. Here, to examine the influence of the past weather on these parameters, we monitored weather conditions, G93 parameters, isoprene synthase transcripts and protein levels, and MEP pathway metabolites in the tropical tree Ficus septica for 12 days and analyzed their relationship with cumulative temperature and light intensity. Plants were illuminated with varying (ascending and descending) light regimes, and our previously developed Ping-Pong optimization method was used to parameterize G93. The cumulative temperature of the past 5 and 7 days positively correlated with CT2 and α, respectively, while the cumulative light intensity of the past 10 days showed the highest negative correlation with α. Concentrations of MEP pathway metabolites and IspS gene expression increased with increasing cumulative temperature. At best, the cumulative temperature of the past 2 days positively correlated with the MEP pathway metabolites and IspS gene expression, while these factors showed a biphasic positive and negative correlation with cumulative light intensity. Optimized G93 captured well the temperature and light dependency of isoprene emission at the beginning of the experiment; however, its performance significantly decreased for the latter stages of the experimental duration, especially for the descending phase. This was successfully improved through separate optimization of the ascending and descending phases, emphasizing the importance of the optimization of formula parameters and model improvement. These results have important implications for the improvement of isoprene emission algorithms, particularly under the predicted increase in future global temperatures.
Collapse
Affiliation(s)
- Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Asif Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Shigeki Oogai
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
| | - Ishmael Mutanda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| |
Collapse
|
2
|
Zhang Y, Yang L, Yang J, Hu H, Wei G, Cui J, Xu J. Transcriptome and Metabolome Analyses Reveal Differences in Terpenoid and Flavonoid Biosynthesis in Cryptomeria fortunei Needles Across Different Seasons. FRONTIERS IN PLANT SCIENCE 2022; 13:862746. [PMID: 35937363 PMCID: PMC9355645 DOI: 10.3389/fpls.2022.862746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cryptomeria fortunei (Chinese cedar) has outstanding medicinal value due to its abundant flavonoid and terpenoid contents. The metabolite contents of C. fortunei needles differ across different seasons. However, the biosynthetic mechanism of these differentially synthesized metabolites (DSMs) is poorly understood. To improve our understanding of this process, we performed integrated non-targeted metabolomic liquid chromatography and gas chromatography mass spectrometry (LC-MS and GC-MS), and transcriptomic analyses of summer and winter needles. In winter, the C. fortunei needle ultrastructure was damaged, and the chlorophyll content and F v/F m were significantly (p < 0.05) reduced. Based on GC-MS and LC-MS, we obtained 106 and 413 DSMs, respectively; based on transcriptome analysis, we obtained a total of 41.17 Gb of clean data and assembled 33,063 unigenes, including 14,057 differentially expressed unigenes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DSMs/DEGs were significantly (p < 0.05) enriched in many biosynthesis pathways, such as terpenoids, photosynthates, and flavonoids. Integrated transcriptomic and metabonomic analyses showed that seasonal changes have the greatest impact on photosynthesis pathways, followed by terpenoid and flavonoid biosynthesis pathways. In summer Chinese cedar (SCC) needles, DXS, DXR, and ispH in the 2-methyl-pentaerythritol 4-phosphate (MEP) pathway and GGPS were highly expressed and promoted the accumulation of terpenoids, especially diterpenoids. In winter Chinese cedar (WCC) needles, 9 genes (HCT, CHS, CHI, F3H, F3'H, F3'5'H, FLS, DFR, and LAR) involved in flavonoid biosynthesis were highly expressed and promoted flavonoid accumulation. This study broadens our understanding of the metabolic and transcriptomic changes in C. fortunei needles caused by seasonal changes and provides a reference regarding the adaptive mechanisms of C. fortunei and the extraction of its metabolites.
Collapse
|
3
|
Wang J, Zhou Y, Wang X, Duan L, Duan J, Li W, Zhang A. Synthesis and Evaluation of Halogenated 5-(2-Hydroxyphenyl)pyrazoles as Pseudilin Analogues Targeting the Enzyme IspD in the Methylerythritol Phosphate Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3071-3078. [PMID: 32078770 DOI: 10.1021/acs.jafc.9b08057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports halogenated 5-(2-hydroxyphenyl)pyrazoles as pseudilin analogues with the potential to target the enzyme IspD in the methylerythritol phosphate (MEP) pathway. Such analogues were designed using the bioisosteric replacement of the pseudilin core structure and synthesized via an efficient three-step route. With AtIspD-based screening and pre- and post-emergence herbicidal tests, these compounds were demonstrated to have considerable activities against AtIspD, with IC50 up to 3.27 μM, and against model plants rape and barnyard grass, with moderate to excellent activities. At a rate of 150 g/ha in the greenhouse test, three compounds exhibited higher or comparable herbicidal activities than pseudilin. Molecular docking of representative compounds into the allosteric site of AtIspD revealed a binding mode similar to that of pseudilin. The established bioisosterism and synthesis method in this work may serve as an important tool for the development of new herbicides and antimicrobials targeting IspD in the MEP pathway.
Collapse
Affiliation(s)
- Jili Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yaqing Zhou
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Xiuwen Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lixia Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiang Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weiguo Li
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Aidong Zhang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
4
|
|
5
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
6
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
7
|
Affiliation(s)
- Annika Frank
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michael Groll
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
8
|
Pulice G, Pelaz S, Matías-Hernández L. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production. FRONTIERS IN PLANT SCIENCE 2016; 7:329. [PMID: 27047510 PMCID: PMC4796020 DOI: 10.3389/fpls.2016.00329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/03/2016] [Indexed: 05/03/2023]
Abstract
Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further efforts should be addressed toward optimization of the most cost-effective biofarming approaches for synthesis and production of medicines against the malaria parasite.
Collapse
Affiliation(s)
- Giuseppe Pulice
- Sequentia Biotech, Parc Científic de BarcelonaBarcelona, Spain
| | - Soraya Pelaz
- Plant Development and Signal Transduction Department, Centre for Research in Agricultural GenomicsBarcelona, Spain
- Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain
| | - Luis Matías-Hernández
- Sequentia Biotech, Parc Científic de BarcelonaBarcelona, Spain
- Plant Development and Signal Transduction Department, Centre for Research in Agricultural GenomicsBarcelona, Spain
| |
Collapse
|
9
|
Molla GS, Wohlgemuth R, Liese A. One-pot enzymatic reaction sequence for the syntheses of d-glyceraldehyde 3-phosphate and l-glycerol 3-phosphate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Abstract
Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.
Collapse
Affiliation(s)
- Vitalia Henríquez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile.
| | - Carolina Escobar
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Janeth Galarza
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Javier Gimpel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| |
Collapse
|
11
|
Jacobsen EE, Anthonsen T. 2-C-Methyl-d-erythritol. Produced in plants, forms aerosols in the atmosphere. An alternative pathway in isoprenoid biosynthesis. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1095677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Abstract
Escherichia coli and Salmonella contain the naphthoquinones menaquinone (MK; vitamin K2) and demethylmenaquinone and the benzoquinone ubiquinone (coenzyme Q; Q). Both quinones are derived from the shikimate pathway, which has been called a "metabolic tree with many branches." There are two different pathways for the biosynthesis of the naphthoquinones. The vast majority of prokaryotes, including E. coli and Salmonella, and the plants use the o-succinylbenzoate pathway, while a minority uses the futalosine pathway. The quinone nucleus of Q is derived directly from chorismate, while that of MK is derived from chorismate via isochorismate. The prenyl side chains of both quinones are from isopentenyl diphosphate formed by the 2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway and the methyl groups are from S-adenosylmethionine. In addition, MK biosynthesis requires 2-ketoglutarate and cofactors ATP, coenzyme A, and thiamine pyrophosphate. Despite the fact that both quinones originate from the shikimate pathway, there are important differences in their biosyntheses. The prenyl side chain in MK biosynthesis is introduced at the penultimate step, accompanied by decarboxylation, whereas in Q biosynthesis it is introduced at the second step, with retention of the carboxyl group. In MK biosynthesis, all the reactions of the pathway up to prenylation are carried out by soluble enzymes, whereas all the enzymes involved in Q biosynthesis except the first are membrane bound. In MK biosynthesis, the last step is a C-methylation; in Q biosynthesis, the last step is an O-methylation. In Q biosynthesis a second C-methylation and O-methylation take place in the middle part of the pathway. Despite the fact that Q and MK biosyntheses diverge at chorismate, the C-methylations in both pathways are carried out by the same methyltransferase.
Collapse
|
13
|
Armstrong CM, Meyers DJ, Imlay LS, Freel Meyers C, Odom AR. Resistance to the antimicrobial agent fosmidomycin and an FR900098 prodrug through mutations in the deoxyxylulose phosphate reductoisomerase gene (dxr). Antimicrob Agents Chemother 2015; 59:5511-9. [PMID: 26124156 PMCID: PMC4538460 DOI: 10.1128/aac.00602-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022] Open
Abstract
There is a pressing need for new antimicrobial therapies to combat globally important drug-resistant human pathogens, including Plasmodium falciparum malarial parasites, Mycobacterium tuberculosis, and Gram-negative bacteria, including Escherichia coli. These organisms all possess the essential methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, which is not found in humans. The first dedicated enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr), is inhibited by the phosphonic acid antibiotic fosmidomycin and its analogs, including the N-acetyl analog FR900098 and the phosphoryl analog fosfoxacin. In order to identify mutations in dxr that confer resistance to these drugs, a library of E. coli dxr mutants was screened at lethal fosmidomycin doses. The most resistant allele (with the S222T mutation) alters the fosmidomycin-binding site of Dxr. The expression of this resistant allele increases bacterial resistance to fosmidomycin and other fosmidomycin analogs by 10-fold. These observations confirm that the primary cellular target of fosmidomycin is Dxr. Furthermore, cell lines expressing Dxr-S222T will be a powerful tool to confirm the mechanisms of action of future fosmidomycin analogs.
Collapse
Affiliation(s)
- Christopher M Armstrong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leah S Imlay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Audrey R Odom
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Chofor R, Sooriyaarachchi S, Risseeuw MDP, Bergfors T, Pouyez J, Johny C, Haymond A, Everaert A, Dowd CS, Maes L, Coenye T, Alex A, Couch RD, Jones TA, Wouters J, Mowbray SL, Van Calenbergh S. Synthesis and Bioactivity of β-Substituted Fosmidomycin Analogues Targeting 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase. J Med Chem 2015; 58:2988-3001. [DOI: 10.1021/jm5014264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- René Chofor
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Sanjeewani Sooriyaarachchi
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Martijn D. P. Risseeuw
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Terese Bergfors
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Jenny Pouyez
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Chinchu Johny
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Amanda Haymond
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Annelien Everaert
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cynthia S. Dowd
- Department
of Chemistry, George Washington University, Washington, D.C. 20052, United States
| | - Louis Maes
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein
1, B-2610 Antwerp, Belgium
| | - Tom Coenye
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Alexander Alex
- Evenor Consulting Ltd., The
New Barn, Mill Lane, Eastry, Kent CT13 0JW, United Kingdom
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - T. Alwyn Jones
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Johan Wouters
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Sherry L. Mowbray
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| |
Collapse
|
15
|
Gauss D, Schoenenberger B, Wohlgemuth R. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydr Res 2014; 389:18-24. [DOI: 10.1016/j.carres.2013.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 11/28/2022]
|
16
|
Midrier C, Montel S, Braun R, Haaf K, Willms L, van der Lee A, Volle JN, Pirat JL, Virieux D. Fosmidomycin analogues with N-hydroxyimidazole and N-hydroxyimidazolone as a chelating unit. RSC Adv 2014. [DOI: 10.1039/c4ra00757c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fosmidomycin has been reported to have many biological activities as an antibacterial and antimalarial, along with being a herbicidal agent.
Collapse
Affiliation(s)
- Camille Midrier
- Institut Charles Gerhardt
- UMR5253
- AM2N
- F34296 Montpellier Cedex 5,, France
| | - Sonia Montel
- Institut Charles Gerhardt
- UMR5253
- AM2N
- F34296 Montpellier Cedex 5,, France
| | - Ralf Braun
- Bayer CropScience AG
- Chemistry Frankfurt
- 65926 Frankfurt am Main, Germany
| | - Klaus Haaf
- Bayer CropScience AG
- Chemistry Frankfurt
- 65926 Frankfurt am Main, Germany
| | - Lothar Willms
- Bayer CropScience AG
- Chemistry Frankfurt
- 65926 Frankfurt am Main, Germany
| | - Arie van der Lee
- Institut Européen des membranes
- cc047 Université de Montpellier 2
- Montpellier, France
| | - Jean-Noël Volle
- Institut Charles Gerhardt
- UMR5253
- AM2N
- F34296 Montpellier Cedex 5,, France
| | - Jean-Luc Pirat
- Institut Charles Gerhardt
- UMR5253
- AM2N
- F34296 Montpellier Cedex 5,, France
| | - David Virieux
- Institut Charles Gerhardt
- UMR5253
- AM2N
- F34296 Montpellier Cedex 5,, France
| |
Collapse
|
17
|
Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs. PLoS Comput Biol 2013; 9:e1003395. [PMID: 24367248 PMCID: PMC3868525 DOI: 10.1371/journal.pcbi.1003395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
Abstract
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.
Collapse
|
18
|
Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013; 82:497-530. [PMID: 23746261 DOI: 10.1146/annurev-biochem-052010-100934] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.
Collapse
Affiliation(s)
- Lishan Zhao
- Amyris, Inc., Emeryville, California 94608, USA.
| | | | | | | | | |
Collapse
|
19
|
Chang WC, Song H, Liu HW, Liu P. Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 2013; 17:571-9. [PMID: 23891475 PMCID: PMC4068245 DOI: 10.1016/j.cbpa.2013.06.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
Isoprenoids are one of the largest classes of natural products and all of them are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For decades, the mevalonic acid (MVA) pathway was proposed to be the only IPP and DMAPP biosynthetic pathway. This review summarizes the newly discovered IPP and DMAPP production pathways since late 1990s, their distribution among different kingdoms, and their roles in secondary metabolite production. These new IPP and DMAPP production pathways include the methylerythritol phosphate (MEP) pathway, a modified MVA pathway, and the 5-methylthioadenosine shunt pathway. Relative to the studies on the MVA pathway, information on the MEP pathway regulation is limited and the mechanistic details of several of its novel transformations remain to be addressed. Current status on both MEP pathway regulation and mechanistic issues is also presented.
Collapse
Affiliation(s)
- Wei-chen Chang
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Heng Song
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
20
|
Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 2013; 8:e68886. [PMID: 23874800 PMCID: PMC3712917 DOI: 10.1371/journal.pone.0068886] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 06/07/2013] [Indexed: 12/15/2022] Open
Abstract
Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.
Collapse
|
21
|
Zinglé C, Kuntz L, Tritsch D, Grosdemange-Billiard C, Rohmer M. Modifications around the hydroxamic acid chelating group of fosmidomycin, an inhibitor of the metalloenzyme 1-deoxyxylulose 5-phosphate reductoisomerase (DXR). Bioorg Med Chem Lett 2012; 22:6563-7. [DOI: 10.1016/j.bmcl.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022]
|
22
|
Li H, Dai SB, Gao WY. Preparation of Isotope Labeled/Unlabeled Key Intermediates in 2-Methyl-D-erythritol 4-Phosphate Terpenoid Biosynthetic Pathway. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Ponaire S, Zinglé C, Tritsch D, Grosdemange-Billiard C, Rohmer M. Growth inhibition of Mycobacterium smegmatis by prodrugs of deoxyxylulose phosphate reducto-isomerase inhibitors, promising anti-mycobacterial agents. Eur J Med Chem 2012; 51:277-85. [DOI: 10.1016/j.ejmech.2012.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
24
|
Span I, Gräwert T, Bacher A, Eisenreich W, Groll M. Crystal Structures of Mutant IspH Proteins Reveal a Rotation of the Substrate's Hydroxymethyl Group during Catalysis. J Mol Biol 2012; 416:1-9. [DOI: 10.1016/j.jmb.2011.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 10/15/2022]
|
25
|
Matsuda K. Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. Top Curr Chem (Cham) 2011; 314:73-81. [PMID: 22006239 DOI: 10.1007/128_2011_271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyrethrins are a natural insecticide biosynthesized by the plant pyrethrum [Chrysanthemum cinerariaefolium (Current species name: Tanacetum cinerariifolium)] of the family Asteraceae. Although pyrethrins have been used to control household pests for the past century, little is known about the mechanism of biosynthesis, contrasting with intensive research on their synthetic analogs, pyrethroids. The author studied pyrethrin biosynthesis in young seedlings of C. cinerariaefolium. The results of experiments using (13)C-labeled glucose as the biosynthesis precursor indicated that the acid and alcohol moieties are biosynthesized via the 2-C-methyl-D: -erythritol 4-phosphate (MEP) and oxylipin pathways, respectively. Further study on the effects of wound-induced signals in leaves showed that biosynthesis is enhanced in response to both volatile and nonvolatile signals.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Kinki University, Nakamachi, Japan.
| |
Collapse
|
26
|
Stadler AM, Harrowfield J. Places and chemistry: Strasbourg—a chemical crucible seen through historical personalities. Chem Soc Rev 2011; 40:2061-108. [DOI: 10.1039/c0cs00197j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Li H, Tian J, Wang H, Yang SQ, Gao WY. An Improved Preparation of D-Glyceraldehyde 3-Phosphate and Its Use in the Synthesis of 1-Deoxy-D-xylulose 5-Phosphate. Helv Chim Acta 2010. [DOI: 10.1002/hlca.200900441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Affiliation(s)
- Edda Gössinger
- Institut für Organische Chemie der Universität Wien, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Narayanasamy P, Eoh H, Brennan PJ, Crick DC. Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. CHEMISTRY & BIOLOGY 2010; 17:117-22. [PMID: 20189102 PMCID: PMC2837070 DOI: 10.1016/j.chembiol.2010.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Because there is no ortholog of IspF in human cells, IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first, to our knowledge, synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening.
Collapse
Affiliation(s)
| | | | - Patrick J. Brennan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences. Colorado State University, 1682 Campus Delivery, Fort Collins CO 80523-1682, USA
| | - Dean C. Crick
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences. Colorado State University, 1682 Campus Delivery, Fort Collins CO 80523-1682, USA
| |
Collapse
|
30
|
Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W. Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. PHYTOCHEMISTRY 2010; 71:179-87. [PMID: 19932496 DOI: 10.1016/j.phytochem.2009.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/08/2009] [Accepted: 10/19/2009] [Indexed: 05/18/2023]
Abstract
Artemisinin from Artemisia annua has become one of the most important drugs for malaria therapy. Its biosynthesis proceeds via amorpha-4,11-diene, but it is still unknown whether the isoprenoid precursors units are obtained by the mevalonate pathway or the more recently discovered non-mevalonate pathway. In order to address that question, a plant of A. annua was grown in an atmosphere containing 700 ppm of 13CO2 for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed by 13C NMR spectroscopy. The isotopologue pattern shows that artemisinin was predominantly biosynthesized from (E,E)-farnesyl diphosphate (FPP) whose central isoprenoid unit had been obtained via the non-mevalonate pathway. The isotopologue data confirm the previously proposed mechanisms for the cyclization of (E,E)-FPP to amorphadiene and its oxidative conversion to artemisinin. They also support deprotonation of a terminal allyl cation intermediate as the final step in the enzymatic conversion of FPP to amorphadiene and show that either of the two methyl groups can undergo deprotonation.
Collapse
Affiliation(s)
- Nicholas Schramek
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
From molecular fossils of bacterial hopanoids to the formation of isoprene units: discovery and elucidation of the methylerythritol phosphate pathway. Lipids 2008; 43:1095-107. [PMID: 19011917 DOI: 10.1007/s11745-008-3261-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Investigations on the biosynthesis of bacterial triterpenoids of the hopane series led to the unexpected discovery of an alternative mevalonate independent pathway for the formation of isoprene units. Methylerythritol phosphate, already presenting the C5 branched isoprene skeleton, is the key intermediate. This pathway was independently characterized in ginkgo embryos for the formation of diterpenoids. It is present in most bacteria and in the plastids of all organisms belonging to phototrophic phyla. The key steps of the discovery and elucidation of this metabolic route are presented in this review.
Collapse
|
32
|
Carrau FM, Boido E, Dellacassa E. Terpenoids in Grapes and Wines: Origin and Micrometabolism during the Vinification Process. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Terpenoids, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine, they are considered to originate from the grapes and not from fermentation. However, the biosynthesis of monoterpenes by Saccharomyces cerevisiae in the absence of grape derived precursors was shown recently to be of de novo origin in wine yeast strains. The contribution of yeast and bacterial fermentation metabolites to the aromatic profile of wine is well documented. However, the biotechnological application of this knowledge is still rather limited and often contradictory. Redox conditions, size of inoculums, temperatures of fermentation, osmotic pressure and the medium nutritional content can profoundly affect the profile of yeast and bacterial metabolites produced or their biotransformation capacity in wine. Results obtained in the last decades in relation to microbial micrometabolism of aroma compounds measured with more sophisticated GC-MS methods are discussed in relation to the known terpenoid biosynthetic pathways and wine composition. Further development of metabolic footprinting techniques for the discrimination of wine quality must be one of the main challenges for wine biotechnologists in the near future.
Collapse
Affiliation(s)
- Francisco M. Carrau
- Sección Enología, Departmento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Eduardo Boido
- Sección Enología, Departmento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Eduardo Dellacassa
- Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|