1
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Bahoussi AN, Wang PH, Ma ZH, Rani N, Wu C, Xing L. Identification of novel recombinants and proposed standard reference genomes for phylogenetic classification of canine parvovirus-2 (CPV-2): Comprehensive analysis revealing global evolutionary trait. Front Vet Sci 2022; 9:1030522. [DOI: 10.3389/fvets.2022.1030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Sustained spread and continuous evolution of CPV-2 generate new genetic information; nevertheless, there is no adopted phylogenetic tool, and parvo virologists still refer to the three antigenic variants. Herein, this report attempted to review the evolutionary trait of CPV-2 and proposed standard reference genomes using the Maximum Likelihood-based phylogenetic analysis and Parsimony-Informative Sites. The analysis revealed three main evolutionary pathways where CPV-2 strains cluster into distinct clades depicted as GI, GII, or GIII, respectively. Furthermore, novel CPV-2 natural recombinants were detected, occurring only between the newly identified strains (2017–2020). Those findings provide unique insights into the evolutionary relatedness of CPV-2, clarify discrepancies between different geographic areas and will contribute to achieving a more reliable CPV-2 genetic and evolutionary genotyping classification.
Collapse
|
3
|
Chang YC, Lin ZY, Lin YX, Lin KH, Chan FT, Hsiao ST, Liao JW, Chiou HY. Canine Parvovirus Infections in Taiwanese Pangolins ( Manis pentadactyla pentadactyla). Vet Pathol 2021; 58:743-750. [PMID: 33866880 DOI: 10.1177/03009858211002198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is among the most important and highly contagious pathogens that cause enteric or systemic infections in domestic and nondomestic carnivores. However, the spillover of CPV-2 to noncarnivores is rarely mentioned. Taiwanese pangolins (Manis pentadactyla pentadactyla) are threatened due to habitat fragmentation and prevalent animal trafficking. Interactions between Taiwanese pangolins, humans, and domestic animals have become more frequent in recent years. However, information about the susceptibility of pangolins to common infectious agents of domestic animals has been lacking. From October 2017 to June 2019, 4 pangolins that were rescued and treated in wildlife rescue centers in central and northern Taiwan presented with gastrointestinal signs. Gross and histopathological examination revealed the main pathologic changes to be necrotic enteritis with involvement of the crypts in all intestinal segments in 2 pangolins. By immunohistochemistry for CPV-2, there was positive labeling of cryptal epithelium throughout the intestine, and immunolabeling was also present in epidermal cells adjacent to a surgical amputation site, and in mononuclear cells in lymphoid tissue. The other 2 pangolins had mild enteritis without crypt involvement, and no immunolabeling was detected. The nucleic acid sequences of polymerase chain reaction (PCR) amplicons from these 4 pangolins were identical to a Chinese CPV-2c strain from domestic dogs. Quantitative PCR revealed a higher ratio of CPV-2 nucleic acid to internal control gene in the 2 pangolins with severe intestinal lesions and positive immunoreactivity. Herein, we present evidence of CPV-2 infections in pangolins.
Collapse
Affiliation(s)
| | - Zhi Yi Lin
- 34916National Chung Hsing University, Taichung
| | - Yan Xiu Lin
- 34916National Chung Hsing University, Taichung
| | - Kuei Hsien Lin
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Fang Tse Chan
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Shun Ting Hsiao
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | | | | |
Collapse
|
4
|
Comparison of pathological changes in the study of dogs affected by parvoviral enteritis and intestinal yersiniosis. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim of the study: to examine the pathological changes in dogs that died due to confirmed intestinal yersiniosis and parvoviral enteritis and establish trends for characteristic organ lesions for both diseases in comparison, then evaluate our findings with the existing published material of sufficient evidence quality regarding differential postmortem diagnosis of spontaneous intestinal yersiniosis and parvoviral enteritis in dogs.
Materials and methods: the study examined the cases of 25 dogs from 2 month to 1.3 y.o. of various breed, gender that died due to either confirmed Canine parvoviral enteritis (CPV) infection or intestinal yersiniosis and subsequently divided into two groups based on their diagnosis.
The definitive diagnosis has been confirmed by performing rapid ELISA diagnostics (SensPERT®, VetAll Laboratories, Kyunggi-Do, Korea) for CPV and serological tests for Y. enterocolitica sera AT were performed using yersiniosis antigens from the "Component set for serological diagnosis of animal yersiniosis" (Kharkiv, NSC IEKVM, TS 46.15.091-95) in accordance with the "Interim guidelines for the use of a set of components for serological diagnostics". A dilution of 1: 200 has been considered as the diagnostic titer.
After the definitive diagnosis had been confirmed, the animals were divided into two groups, depending on diagnosis: CPV (n=14) or IY (n=11). The autopsies of twenty randomly (10 from each group) selected dog corpses have been conducted utilizing standard methodology.
Results: according to the results of autopsy of dogs afflicted by CPV, the main pathological changes were found in the small intestine – catarrhal-desquamative inflammation (in 100 % of cases), serous-hemorrhagic mesenteric lymphadenitis (90 %) large intestine (70 %) in the stomach (60 %), in the liver (50 %), in other organs – less than 40 percent of cases and most notably caused lung damage (edema and local atelectasis) in 90 % of the animals in the study, which was not the case for intestinal yersiniosis with only 20 % incidence of lung damage.
Conclusions: Spontaneous intestinal yersiniosis in dogs was pathologically manifested by pronounced catarrhal-desquamative processes mainly in the stomach and small intestine (70, 100 and 80 % of cases, respectively), inflammation of the mesenteric lymph nodes (90 %) and large intestine (80 %), dystrophy and congestive processes in the liver (80 %). Low incidence and type of lung damage (congestive hyperemia in 20 % of reviewed cases compared to 90 % of local atelectasis add edema in CPV group) was noteworthy. Cases of 25 animals that died due to either confirmed CPV or Y. enterocolitica infection were analyzed, and 20 animal corpses were autopsied during study. Dogs that died from intestinal yersiniosis had significantly higher frequency of pathological findings in kidney (200 %) and liver (60 %) in particular. Changes in stomach and large intestine were also more frequent. At the same time, we observed a lower frequency of pathological changes in spleen (33 % lower), heart (25 % lower) and the lowest frequency was in lungs (77 % lower) presented by edema and local atelectasis in animals afflicted by yersiniosis compared to CPV. Incidence and manifestation of pathological findings was mesenteric lymph nodes and abdominal cavity were similar, and could not be considered during posthumous diagnostics.
Collapse
|
5
|
Molesan A, Goodman L, Ford J, Lovering SJ, Kelly K. The Causes of Canine Myocarditis and Myocardial Fibrosis Are Elusive by Targeted Molecular Testing: Retrospective Analysis and Literature Review. Vet Pathol 2019; 56:761-777. [PMID: 31106678 PMCID: PMC10957289 DOI: 10.1177/0300985819839241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocarditis can cause death or permanent heart damage. As epidemiologic and etiopathologic data for canine myocarditis are lacking, we performed a retrospective study using nucleic acid extracted from archived (2007 to 2015) tissues from myocarditis cases and control dogs without myocardial lesions. Heart tissue from pediatric/juvenile and adult dogs was tested with a comprehensive panel of conventional and real-time polymerase chain reaction (PCR) assays targeting recognized agents of canine myocarditis based on a literature review and informed by the comparative epidemiology of human myocarditis. The PCR screen, which included canine parvovirus 2 (CPV-2), canine distemper virus, canine herpesvirus, Borrelia spp, West Nile virus, adenovirus, parainfluenza virus, pneumovirus, respiratory coronavirus, influenza virus, Bartonella spp, Rickettsia spp, Mycoplasma spp, and Neospora caninum, did not detect agents in 35 of 66 cases (53%; 95% confidence interval [CI], 41%-65%) and was frequently negative in adults (21/26); by comparison, agents were not detected in 27 of 57 controls (47%; 95% CI, 35%-60%). Canine distemper virus, herpesvirus, adenovirus, coronavirus, parainfluenza virus, Mycoplasma haemocanis, and N. caninum were occasionally detected in both cases and controls; thus, PCR detection was not considered to indicate causation. We previously reported that CPV-2 continues to be associated with myocarditis in young dogs despite widespread vaccination; in adults, CPV-2 was detected in 2 of 26 cases and 4 of 22 controls. As several agents were similarly detected in cases and controls, it is unclear if these are cardiopathogenic, incidental, or latent. West Nile virus was detected at the analytic limit in 1 adult case. We did not detect Borrelia spp, Bartonella spp, Rickettsia spp, or influenza A virus in the myocarditis cases. These data demonstrate the limitations of current targeted diagnostic tests and the need for additional research to identify unknown agents and develop testing strategies for canine myocarditis.
Collapse
Affiliation(s)
- Alex Molesan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura Goodman
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jordan Ford
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Samantha J. Lovering
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kathleen Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Kishore J, Kishore D. Clinical impact & pathogenic mechanisms of human parvovirus B19: A multiorgan disease inflictor incognito. Indian J Med Res 2019; 148:373-384. [PMID: 30666000 PMCID: PMC6362725 DOI: 10.4103/ijmr.ijmr_533_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human parvovirus B19 (B19V) causes myriads of clinical diseases; however, owing to lack of awareness and undetermined clinical impact, it has failed to become a virus pathogen of global concern. Cryptically, B19V causes significant morbidity and mortality. Half of the world population and 60 per cent of Indians are known to be serologically naive and are at risk of acquiring B19V infections. Cumulatively, our data showed 21.3 per cent B19V-infected patients with juvenile chronic arthropathy, recurrent abortions, multi-transfused thalassaemia and leukaemia. In addition, B19V-infected cases that ended fatally included patients with pure red cell aplasia, fulminant hepatitis and haemophagocytic syndrome. Novel clinical associations of B19V observed were amegakaryocytic thrombocytopaenia, myositis and non-occlusive ischaemic gangrene of bowel. B19V possesses multiple receptors which are distributed widely in human tissues. Vascular endothelial cell infection by B19V causes endothelialitis and vasculitic injuries besides antibody-dependent enhancement which empowered B19V to cause multiorgan diseases. Owing to lack of suitable animal model for B19V, true causal role remains to be determined, but numerous reports on B19V infections substantiate a causal role in multiorgan diseases. Hence, B19V infections need to be recognized, investigated and treated besides making efforts on vaccine developments.
Collapse
Affiliation(s)
- Janak Kishore
- Division of Virology, Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Divya Kishore
- Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
7
|
Porencephaly and Periventricular Encephalitis in a 4-month-old Puppy: Detection of Canine Parvovirus Type 2 and Potential Role in Brain Lesions. J Comp Pathol 2019; 169:20-24. [PMID: 31159946 DOI: 10.1016/j.jcpa.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022]
Abstract
A 4-month-old puppy died after showing intracranial signs a few days after a suspected viral enteritis. Grossly, the right cerebral hemisphere had a large irregular cavity external to the internal capsule. Histopathological examination revealed a cystic lesion in the right hemisphere and non-suppurative inflammation of the diencephalon and periaqueductal nervous tissue. Porencephaly associated with periventricular non-suppurative encephalitis was diagnosed. A nested polymerase chain reaction (PCR) identified the presence of parvovirus DNA in the brain and real-time PCR typed this as canine parvovirus (CPV) type 2a. Immunohistochemistry revealed the presence of CPV antigen in the cytoplasm of scattered cells in the subependymal layers and choroid plexus epithelium. The porencephaly was not associated with inflammatory lesions or CPV antigen and was considered to have preceded the neurological signs. In contrast, the detection of CPV antigen in the subependymal layers and choroid plexus epithelium supported the association of this virus with the periventricular encephalitis.
Collapse
|
8
|
Behdenna A, Lembo T, Calatayud O, Cleaveland S, Halliday JEB, Packer C, Lankester F, Hampson K, Craft ME, Czupryna A, Dobson AP, Dubovi EJ, Ernest E, Fyumagwa R, Hopcraft JGC, Mentzel C, Mzimbiri I, Sutton D, Willett B, Haydon DT, Viana M. Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system. Proc Biol Sci 2019; 286:20182772. [PMID: 30914008 PMCID: PMC6452066 DOI: 10.1098/rspb.2018.2772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20 years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with approximately 3.5-year cycles and prevalence reaching approximately 80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multi-host pathogen, canine distemper virus. However, vaccination can weaken this coupling, raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes.
Collapse
Affiliation(s)
- Abdelkader Behdenna
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jo E. B. Halliday
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Craig Packer
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna Czupryna
- Lincoln Park Zoo, Chicago, IL 60614, USA
- Department of Ecology and Evolution, University of Illinois, Chicago, IL 60607, USA
| | - Andrew P. Dobson
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward J. Dubovi
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14851, USA
| | - Eblate Ernest
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Robert Fyumagwa
- Conservation Areas and Species Diversity Programme, South Africa Country Office, International Union for the Conservation of Nature, Pretoria, South Africa
| | - J. Grant C. Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine Mentzel
- Conservation Areas and Species Diversity Programme, South Africa Country Office, International Union for the Conservation of Nature, Pretoria, South Africa
| | | | - David Sutton
- MSD Animal Health, Walton Manor, Walton, Milton Keynes MK7 7AJ, UK
| | - Brian Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G6 1QH, UK
| | - Daniel T. Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
McEndaffer L, Molesan A, Erb H, Kelly K. Feline Panleukopenia Virus Is Not Associated With Myocarditis or Endomyocardial Restrictive Cardiomyopathy in Cats. Vet Pathol 2017; 54:669-675. [PMID: 28622497 PMCID: PMC10956504 DOI: 10.1177/0300985817695516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Canine parvovirus-2 (CPV-2) is nearly indistinguishable from feline panleukopenia virus (FPV) and is a well-known cause of viral myocarditis in young puppies; however, it is not known whether either FPV or CPV-2 naturally infects feline cardiomyocytes and causes myocarditis. Endomyocarditis (EMC) and left ventricular endomyocardial fibrosis (LVEF), clinically known as "endomyocardial restrictive cardiomyopathy," are important feline heart diseases suspected to have an infectious etiology. A continuum is suggested with EMC representing the acute reaction to an unknown infectious agent and LVEF the chronic manifestation of repair. The purpose of this study was to determine (1) whether there is natural parvovirus infection of the feline myocardium and (2) whether parvoviral infection is associated with feline EMC and/or LVEF. In a retrospective study, polymerase chain reaction and sequencing for the parvovirus VP1/2 gene was performed on archived heart tissue from cats with endomyocardial disease and controls. Similar methods were used prospectively on myocardial tissues from shelter-source kittens. Although 8 of 36 (22%; 95% confidence interval [CI], 11%-40%) shelter kittens had parvoviral DNA in myocardial tissue, VP1/2 DNA was not detected in 33 adult cases or 34 controls (95% CI, 0% to ∼11%). These findings were confirmed by in situ hybridization: adult cats did not have detectable parvovirus DNA, although rare intranuclear signal was confirmed in 7 of 8 shelter-source kittens. In kittens, parvovirus was not significantly associated with myocarditis, and in situ hybridization signal did not colocalize with inflammation. Although infection of cardiomyocytes was demonstrated in kittens, these data do not support a role for parvovirus in EMC-LVEF.
Collapse
Affiliation(s)
- Laura McEndaffer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alex Molesan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Hollis Erb
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kathleen Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Mylonakis ME, Kalli I, Rallis TS. Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2016; 7:91-100. [PMID: 30050842 PMCID: PMC6053044 DOI: 10.2147/vmrr.s80971] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Canine parvovirus type 2 is the cause of a highly contagious acute enteritis associated with high morbidity and mortality, with very low survival rates in untreated dogs. Although severe clinical disease typically occurs in dogs younger than 6 months of age, adults with insufficient immunity may potentially be affected. In this article, the current state of knowledge is reviewed regarding the diagnostic aspects of parvoviral enteritis, with special emphasis placed on the clinical relevance of the detection of viral antigens in the feces, detection of viral antibodies in the serum, or the polymerase chain reaction-based amplification of the viral DNA in the feces. In addition, the components of the supportive and symptomatic treatment aiming to optimize the outcome of the disease in the clinical setting are thoroughly reviewed. Immunization guidelines for the prevention of the disease are also updated.
Collapse
Affiliation(s)
- Mathios E Mylonakis
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| | - Iris Kalli
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| | - Timoleon S Rallis
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| |
Collapse
|
11
|
Sime TA, Powell LL, Schildt JC, Olson EJ. Parvoviral myocarditis in a 5-week-old Dachshund. J Vet Emerg Crit Care (San Antonio) 2015. [PMID: 26220397 DOI: 10.1111/vec.12347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe a case of myocarditis associated with naturally occurring canine parvovirus type 2 (CPV-2). CASE SUMMARY A 5-week-old male intact Dachshund dog presented for acute respiratory distress. Limited diagnostic tests prior to the dog experiencing cardiopulmonary arrest included a lateral thoracic radiograph, which indicated cardiomegaly and diffuse unstructured pulmonary infiltrate. Necropsy was performed and results identified a lymphoplasmacytic myocarditis with positive CPV-2 immunohistochemistry within the myocardium. UNIQUE INFORMATION PROVIDED This report describes the natural occurrence of CPV-2-associated myocarditis. In addition to highlighting this rare form of canine parvovirus, cardiomyopathy in survivors of the acute viral myocarditis phase is reviewed.
Collapse
Affiliation(s)
- Tara A Sime
- From the Department of Veterinary Clinical Sciences (Sime, Powell, Schildt), and the Department of Veterinary Population Medicine, Veterinary Diagnostic Laboratory (Olson), College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Lisa L Powell
- From the Department of Veterinary Clinical Sciences (Sime, Powell, Schildt), and the Department of Veterinary Population Medicine, Veterinary Diagnostic Laboratory (Olson), College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Julie C Schildt
- From the Department of Veterinary Clinical Sciences (Sime, Powell, Schildt), and the Department of Veterinary Population Medicine, Veterinary Diagnostic Laboratory (Olson), College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Erik J Olson
- From the Department of Veterinary Clinical Sciences (Sime, Powell, Schildt), and the Department of Veterinary Population Medicine, Veterinary Diagnostic Laboratory (Olson), College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| |
Collapse
|
12
|
|
13
|
|
14
|
Kocaturk M, Martinez S, Eralp O, Tvarijonaviciute A, Ceron J, Yilmaz Z. Tei index (myocardial performance index) and cardiac biomarkers in dogs with parvoviral enteritis. Res Vet Sci 2010; 92:24-9. [PMID: 21074228 DOI: 10.1016/j.rvsc.2010.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/25/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
Tei index (myocardial performance) and cardiac biomarkers were evaluated in dogs with parvoviral enteritis (PVE). Tei index was calculated as isovolumic contraction time plus isovolumic relaxation time divided by ejection time. Myocardial and skeletal muscle damages were assessed by serum levels of cardiac troponin I (cTnI), creatine (phospho) kinase, lactate dehydrogenase and aspartate aminotransferase. Serum magnesium level was also determined. According to treatment response, dogs were divided into the survivor (n=20) and non-survivor groups (n=23). Seven healthy dogs served as controls. The mean value of the Tei index was higher in non-survivors, compared with survivors (p<0.02) and healthy controls (p<0.01). Serum level of cTnI in non-survivors was higher than that of survivors and controls (p<0.05). Tei index showed the highest sensitivity and specificity to predict mortality. The findings of an elevated Tei index and an increase in serum cTnI are factors associated with a poor prognosis in cases of canine parvovirosis.
Collapse
Affiliation(s)
- Meric Kocaturk
- Department of Internal Medicine, Uludag University, Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Leukoencephalopathy associated with parvovirus infection in Cretan hound puppies. J Clin Microbiol 2010; 48:3169-75. [PMID: 20592142 DOI: 10.1128/jcm.01582-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukoencephalopathies in dogs encompass presumably inherited conditions such as leukodystrophies, hypomyelination or spongiform degeneration, but other causes, such as virus infections and toxic or nutritional factors, might also play a contributory role. In this report, we provide evidence of parvovirus infection and replication in the brains of five 6-week-old Cretan hound puppies suffering from a puppy shaker syndrome and leukoencephalopathy. Although these puppies belonged to two different litters, they were closely related, tracing back two generations to the same sire. Histologically, a mild to moderate lymphohistiocytic meningitis, with focal lymphohistiocytic leukoencephalitis in two animals, and a mild to moderate vacuolation with myelin loss, mainly in the white matter of the cerebellum was detected. Vacuolation was also found in the corpus callosum, fimbria hippocampi, mesencephalon, capsula interna, basal ganglia, and hypothalamus. By immunohistology and in situ hybridization, either parvoviral antigen, DNA, mRNA, or replicative intermediate DNA were detected in the cerebellum, hippocampus, periventricular areas, corpus callosum, cerebral cortex, medulla oblongata, and spinal cord. Parvovirus antigen, DNA, and mRNA were present in cells of the outer granular layer of the cerebellum and in periventricular cells, most likely representing spongioblasts, glial cells, neurons, endothelial cells, occasional macrophages, and ependymal cells. Sequencing revealed canine parvovirus type 2 stretches. Thus, an association of parvovirus infection with the leukoencephalopathy seems likely, possibly facilitated by a genetic predisposition due to the mode of inbreeding in this particular dog breed.
Collapse
|
16
|
Elia G, Cavalli A, Desario C, Lorusso E, Lucente MS, Decaro N, Martella V, Buonavoglia C. Detection of infectious canine parvovirus type 2 by mRNA real-time RT-PCR. J Virol Methods 2007; 146:202-8. [PMID: 17692932 PMCID: PMC7112852 DOI: 10.1016/j.jviromet.2007.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/27/2022]
Abstract
A TaqMan real-time RT-PCR assay was developed for detection of RNA transcripts produced by replicating CPV-2. A pair of primers and a TaqMan probe targeting the spliced NS2 mRNA were designed. A synthetic DNA fragment was constructed to mimic the spliced NS2 mRNA by PCR-based gene assembly and was used for generation of standard RNAs. The detection limit of the assay was 1 × 102 RNA copies and standard curve displayed a linear range from 1 × 102 to 1 × 109 copies and a good reproducibility. The assay was then applied to determine the mRNA loads in the tissues of dogs naturally infected by CPV-2. mRNA was detected in a variety of tissues, including the central nervous system.
Collapse
Affiliation(s)
- Gabriella Elia
- Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schwab S, Herden C, Seeliger F, Papaioannou N, Psalla D, Polizopulou Z, Baumgärtner W. Non-suppurative meningoencephalitis of unknown origin in cats and dogs: an immunohistochemical study. J Comp Pathol 2007; 136:96-110. [PMID: 17275833 PMCID: PMC7126569 DOI: 10.1016/j.jcpa.2006.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 11/24/2006] [Indexed: 11/22/2022]
Abstract
Non-suppurative meningoencephalitis of unknown cause is a frequent finding in dogs and cats. Fifty-three dogs and 33 cats with non-suppurative meningoencephalitis of unknown aetiology were examined immunohistochemically for 18 different infectious agents, including viruses, bacteria and prion proteinSc. In 14 (26%) of the dogs and 13 (39%) of the cats a causative agent was identified in the central nervous system (CNS), two dogs and one cat giving positive results for two infectious agents simultaneously. The study revealed infections with known causative agents (porcine herpes virus 1, feline infectious peritonitis virus, Escherichia coli) and a new disease pattern of parvovirus infection in the CNS of dogs and cats. Infection of the CNS with feline leukaemia virus was found in a cat. Five dogs and four cats gave positive results for West Nile virus (WNV) antigen. In one dog, canine parainfluenza virus antigen was detected in the brain. Four dogs and four cats gave positive results for encephalomyocarditis virus (EMCV). The significance of the detection of WNV and EMCV antigen requires further study. The aetiology remained undetermined in 39 dogs (74%) and 20 cats (61%). Although it is possible that non-infectious causes play a more important role than previously thought, infections with hitherto unrecognized agents cannot be ruled out.
Collapse
Affiliation(s)
| | - C. Herden
- Correspondence to: C. Herden, Bünteweg 17, 30559 Hannover, Germany.
| | | | - N. Papaioannou
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Department of Veterinary Pathology
| | | | - Z. Polizopulou
- Department of Clinical Studies, Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | | |
Collapse
|
18
|
Infectious and Parasitic Diseases of the Alimentary Tract. JUBB, KENNEDY & PALMER'S PATHOLOGY OF DOMESTIC ANIMALS 2007. [PMCID: PMC7155580 DOI: 10.1016/b978-070202823-6.50096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Decaro N, Martella V, Elia G, Desario C, Campolo M, Lorusso E, Colaianni ML, Lorusso A, Buonavoglia C. Tissue distribution of the antigenic variants of canine parvovirus type 2 in dogs. Vet Microbiol 2006; 121:39-44. [PMID: 17169509 PMCID: PMC7125685 DOI: 10.1016/j.vetmic.2006.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022]
Abstract
Twelve dogs dead as consequence of natural infection caused by canine parvovirus (CPV) type 2a (n=4), type 2b (n=4) or type 2c (n=4) were investigated for determining the viral DNA loads in different tissue samples. By means of a real-time PCR assay, CPV DNA was detected in all tissues examined, with the highest titres observed in the lymphoid tissue and the lowest loads in the urinary tract. Surprisingly, the nervous tissue was found to contain considerable amounts of CPV nucleic acid. Similar patterns of tissue distribution were observed in all the examined dogs irrespective of the antigenic variant causing the disease.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|