1
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
2
|
Garza MC, Kang SG, Kim C, Monleón E, van der Merwe J, Kramer DA, Fahlman R, Sim VL, Aiken J, McKenzie D, Cortez LM, Wille H. In Vitro and In Vivo Evidence towards Fibronectin's Protective Effects against Prion Infection. Int J Mol Sci 2023; 24:17525. [PMID: 38139358 PMCID: PMC10743696 DOI: 10.3390/ijms242417525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.
Collapse
Affiliation(s)
- M. Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Departamento de Anatomía e Histología Humana, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Jacques van der Merwe
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David A. Kramer
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Leonardo M. Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
3
|
Harpaz E, Salvesen Ø, Rauset GR, Mahmood A, Tran L, Ytrehus B, Benestad SL, Tranulis MA, Espenes A, Ersdal C. No evidence of uptake or propagation of reindeer CWD prions in environmentally exposed sheep. Acta Vet Scand 2022; 64:13. [PMID: 35668456 PMCID: PMC9169292 DOI: 10.1186/s13028-022-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of cervids first reported in North America in the 1960s. In Europe, CWD was first diagnosed in 2016 in a wild reindeer in Norway. Detection of two more cases in the same mountain area led to the complete culling of this partially confined reindeer population of about 2400 animals. A total of 19 CWD positive animals were identified. The affected area is extensively used for the grazing of sheep during summers. There are many mineral licks intended for sheep in the area, but these have also been used by reindeer. This overlap in area use raised concerns for cross-species prion transmission between reindeer and sheep. In this study, we have used global positioning system (GPS) data from sheep and reindeer, including tracking one of the CWD positive reindeer, to investigate spatial and time-relevant overlaps between these two species. Since prions can accumulate in lymphoid follicles following oral uptake, samples of gut-associated lymphoid tissue (GALT) from 425 lambs and 78 adult sheep, which had grazed in the region during the relevant timeframe, were analyzed for the presence of prions. The recto-anal mucosa associated lymphoid tissue (RAMALT) from all the animals were examined by histology, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA), and the ileal Peyer's patch (IPP) from a subsample of 37 lambs were examined by histology and IHC, for the detection of prions. RESULTS GPS data showed an overlap in area use between the infected reindeer herd and the sheep. In addition, the GPS positions of an infected reindeer and some of the sampled sheep showed temporospatial overlap. No prions were detected in the GALT of the investigated sheep even though the mean lymphoid follicle number in RAMALT and IPP samples were high. CONCLUSION The absence of prions in the GALT of sheep that have shared pasture with CWD-infected reindeer, may suggest that transmission of this novel CWD strain to sheep does not easily occur under the conditions found in these mountains. We document that the lymphoid follicle rich RAMALT could be a useful tool to screen for prions in sheep.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway
| | - Aqsa Mahmood
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway.,Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | | | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway.
| |
Collapse
|
4
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
5
|
Meling S, Skovgaard K, Bårdsen K, Helweg Heegaard PM, Ulvund MJ. Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage. BMC Vet Res 2018; 14:281. [PMID: 30208891 PMCID: PMC6134718 DOI: 10.1186/s12917-018-1607-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. RESULTS The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. CONCLUSIONS We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue.
Collapse
Affiliation(s)
- Siv Meling
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Kjetil Bårdsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | | | - Martha J. Ulvund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
6
|
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease of sheep and goats. Scrapie is a protein misfolding disease where the normal prion protein (PrPC) misfolds into a pathogenic form (PrPSc) that is highly resistant to enzymatic breakdown within the cell and accumulates, eventually leading to neurodegeneration. The amino acid sequence of the prion protein and tissue distribution of PrPSc within affected hosts have a major role in determining susceptibility to and potential environmental contamination with the scrapie agent. Many countries have genotype-based eradication programs that emphasize using rams that express arginine at codon 171 in the prion protein, which is associated with resistance to the classical scrapie agent. In classical scrapie, accumulation of PrPSc within lymphoid and other tissues facilitates environmental contamination and spread of the disease within flocks. A major distinction can be made between classical scrapie strains that are readily spread within populations of susceptible sheep and goats and atypical (Nor-98) scrapie that has unique molecular and phenotype characteristics and is thought to occur spontaneously in older sheep or goats. This review provides an overview of classical and atypical scrapie with consideration of potential transmission of classical scrapie to other mammalian hosts.
Collapse
Affiliation(s)
- Justin J Greenlee
- 1 Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
7
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
8
|
Konold T, Phelan LJ, Donnachie BR, Chaplin MJ, Cawthraw S, González L. Codon 141 polymorphisms of the ovine prion protein gene affect the phenotype of classical scrapie transmitted from goats to sheep. BMC Vet Res 2017; 13:122. [PMID: 28472956 PMCID: PMC5418773 DOI: 10.1186/s12917-017-1036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background A study to investigate transmission of classical scrapie via goat milk was carried out in sheep: firstly, lambs were challenged orally with goat scrapie brain homogenate to confirm transmission of scrapie from goats to sheep. In the second study phase, milk from scrapie-infected goats was fed to lambs. Lambs were selected according to their prion protein gene (PRNP) genotype, which was either VRQ/VRQ or ARQ/ARQ, with or without additional polymorphisms at codon 141 (FF141, LF141 or LL141) of the ovine PRNP. This report describes the clinical, pathological and molecular phenotype of goat scrapie in those sheep that progressed to clinical end-stage. Results Ten sheep (six VRQ/VRQ and four ARQ/ARQ, of which three FF141 and one LL141) challenged with one of two scrapie brain homogenates, and six pairs of sheep (ARQ, of which five LL141 and seven LF141) fed milk from six different goats, developed clinical disease, which was characterised by a pruritic (all VRQ/VRQ and LL141 sheep) or a non-pruritic form (all LF141 and FF141 sheep). Immunohistochemical (IHC) examination revealed that the pattern of intra- and extracellular accumulation of disease-associated prion protein in the brain was also dependent on PRNP polymorphisms at codon 141, which was similar in VRQ and LL141 sheep but different from LF141 and FF141 sheep. The influence of codon 141 was also seen in discriminatory Western blot (WB), with LF141 and FF141 sheep showing a bovine spongiform encephalopathy-like profile (diminished reactivity with P4 antibody) on brain tissue. However, discriminatory WB in lymphoid tissues, and IHC pattern and profile both in lymphoid and brain tissue was consistent with classical scrapie in all sheep. Conclusions This study provided further evidence that the clinical presentation and the pathological and molecular phenotypes of scrapie in sheep are influenced by PRNP polymorphisms, particularly at codon 141. Differences in the truncation of disease-associated prion protein between LL141 sheep and those carrying the F141 allele may be responsible for these observations. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1036-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timm Konold
- Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK.
| | - Laura J Phelan
- Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK
| | - Ben R Donnachie
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK
| | - Melanie J Chaplin
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK
| | - Saira Cawthraw
- Central Sequencing Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK
| | - Lorenzo González
- Pathology Department, Animal and Plant Health Agency Lasswade, Penicuik, UK
| |
Collapse
|
9
|
Pathology of Animal Transmissible Spongiform Encephalopathies (TSEs). Food Saf (Tokyo) 2017; 5:1-9. [PMID: 32231922 DOI: 10.14252/foodsafetyfscj.2016027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022] Open
Abstract
Pathology is the study of the structural and functional changes produced by diseases or - more specifically - the lesions they cause. To achieve this pathologists employ various approaches. These include description of lesions that are visible to the naked eye which are the subject of anatomic pathology and changes at the cellular level that are visible under the microscope, the subject of histopathology. Changes at the molecular level which are identified by probes that target specific molecules - mainly proteins that are detected using immunohistochemistry (IHC). As transmissible spongiform encephalopathies (TSEs) do not cause visible lesions anatomic pathology is not applicable to their study. For decades the application of histopathology to detect vacuoles or plaques was the only means of confirming TSE disease. The subsequent discovery of the cellular prion protein (PrPC) and its pathogenic isoform, PrPSc, which is a ubiquitous marker of TSEs, led to the production of anti-PrP antibodies, and enabled the development of PrPSc detection techniques such as immunohistochemistry, Histoblot and PET-blot that have evolved in parallel with similar biochemical methods such as Western blot and ELISA. These methods offer greater sensitivity than histopathology in TSE diagnosis and crucially they can be applied to analyze various phenotypic aspects of single TSE sources increasing the amount of data and offering higher discriminatory power. The above principles are applied to diagnose and define TSE phenotypes which form the basis of strain characterisation.
Collapse
|
10
|
Greenlee JJ, Hamir AN, West Greenlee MH. Abnormal Prion Accumulation Associated with Retinal Pathology in Experimentally Inoculated Scrapie-Affected Sheep. Vet Pathol 2016; 43:733-9. [PMID: 16966452 DOI: 10.1354/vp.43-5-733] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to characterize the patterns of PrPSc immunoreactivity in the retinae of scrapie-affected sheep and to determine the extent of retinal pathology as indicated by glial fibrillary acidic protein immunoreactivity (GFAP-IR) of Müller glia. Sections from the retina of 13 experimentally inoculated scrapie-affected and 2 negative control sheep were examined with immunohistochemical staining for PrPSc, GFAP, and PrPSc/GFAP double staining. GFAP-IR of Müller glia is suggestive of retinal pathology in the absence of morphologic abnormality detected by light microscopy. Sheep with the least amount of PrPSc in the retina have multifocal punctate aggregates of prion staining in the outer half of the inner plexiform layer and rarely in the outer plexiform layer. In these retinae, GFAP-IR is not localized with prion accumulation, but rather is present in moderate numbers of Müller glia throughout the sections of retina examined. The majority of sheep with retinal accumulation of PrPSc have intense, diffuse PrPSc staining in both plexiform layers, with immunoreactivity in the cytoplasm of multiple ganglion cells and lesser amounts in the optic fiber layer and between nuclei in nuclear layers. This intense PrPSc immunoreactivity is associated with diffuse, intense GFAP-IR that extends from the inner limiting membrane to the outer limiting membrane. This is the first report of a prion disease in a natural host that describes the accumulation of PrPSc in retina associated with retinal pathology in the absence of overt morphologic changes indicative of retinal degeneration.
Collapse
Affiliation(s)
- J J Greenlee
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 2300 Dayton Ave., Ames, IA 50010, USA
| | | | | |
Collapse
|
11
|
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal protein-misfolding neurodegenerative diseases. TSEs have been described in several species, including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME) in mink, and Kuru and Creutzfeldt-Jakob disease (CJD) in humans. These diseases are associated with the accumulation of a protease-resistant, disease-associated isoform of the prion protein (called PrP(Sc)) in the central nervous system and other tissues, depending on the host species. Typically, TSEs are acquired through exposure to infectious material, but inherited and spontaneous TSEs also occur. All TSEs share pathologic features and infectious mechanisms but have distinct differences in transmission and epidemiology due to host factors and strain differences encoded within the structure of the misfolded prion protein. The possibility that BSE can be transmitted to humans as the cause of variant Creutzfeldt-Jakob disease has brought attention to this family of diseases. This review is focused on the TSEs of livestock: bovine spongiform encephalopathy in cattle and scrapie in sheep and goats.
Collapse
Affiliation(s)
- Justin J Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| | - M Heather West Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| |
Collapse
|
12
|
Garza MC, Monzón M, Marín B, Badiola JJ, Monleón E. Distribution of peripheral PrP(Sc) in sheep with naturally acquired scrapie. PLoS One 2014; 9:e97768. [PMID: 24828439 PMCID: PMC4020850 DOI: 10.1371/journal.pone.0097768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022] Open
Abstract
Accumulation of prion protein (PrPSc) in the central nervous system is the hallmark of transmissible spongiform encephalopathies. However, in some of these diseases such as scrapie or chronic wasting disease, the PrPSc can also accumulate in other tissues, particularly in the lymphoreticular system. In recent years, PrPSc in organs other than nervous and lymphoid have been described, suggesting that distribution of this protein in affected individuals may be much larger than previously thought. In the present study, 11 non-nervous/non-lymphoid organs from 16 naturally scrapie infected sheep in advanced stages of the disease were examined for the presence of PrPSc. Fourteen infected sheep were of the ARQ/ARQ PRNP genotype and 2 of the VRQ/VRQ, where the letters A, R, Q, and V represent the codes for amino-acids alanine, arginine, glutamine and valine, respectively. Adrenal gland, pancreas, heart, skin, urinary bladder and mammary gland were positive for PrPSc by immunohistochemistry and IDEXX HerdChek scrapie/BSE Antigen EIA Test in at least one animal. Lung, liver, kidney and skeletal muscle exhibited PrPSc deposits by immunohistochemistry only. To our knowledge, this is the first report regarding the presence of PrPSc in the heart, pancreas and urinary bladder in naturally acquired scrapie infections. In some other organs examined, in which PrPSc had been previously detected, PrPSc immunolabeling was observed to be associated with new structures within those organs. The results of the present study illustrate a wide dissemination of PrPSc in both ARQ/ARQ and VRQ/VRQ infected sheep, even when the involvement of the lymphoreticular system is scarce or absent, thus highlighting the role of the peripheral nervous system in the spread of PrPSc.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Centre for Prions and Protein Folding Diseases, University of Alberta, Alberta, Canada
| | - Marta Monzón
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Monleón
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Anatomía e Histología Humanas, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
13
|
Abstract
Classical scrapie is one of the transmissible spongiform encephalopathies (TSEs), a group of fatal infectious diseases that affect the central nervous system (CNS). Classical scrapie can transmit laterally from ewe to lamb perinatally or between adult animals. Here we report detection of infectivity in tissues of an unborn fetus, providing evidence that in utero transmission of classical scrapie is also possible.
Collapse
|
14
|
Influence of polymorphisms in the prion protein gene on the pathogenesis and neuropathological phenotype of sheep scrapie after oral infection. J Comp Pathol 2013; 150:57-70. [PMID: 24342584 DOI: 10.1016/j.jcpa.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/06/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022]
Abstract
The prion protein gene (Prnp) plays a crucial role in the susceptibility of sheep to scrapie in terms of attack rate and/or incubation period. However, the influence of Prnp on the pathogenesis of the disease, specifically the involvement of tissues of the lymphoreticular system (LRS), pathways of neuroinvasion and neuropathological phenotypes, remains controversial. This study reports the onset and progression of disease-associated prion protein (PrP(d)) accumulation in the LRS and nervous tissues of sheep of six different Prnp genotypes infected by oral administration of the same mixed scrapie brain homogenate. Sheep homozygous for glutamine (Q) at codon 171 of PrP, with either valine (V) or alanine (A) at codon 136 (i.e. VRQ/VRQ, VRQ/ARQ and ARQ/ARQ), showed early and consistent PrP(d) accumulation in LRS tissues of the pharynx and gut. In contrast, LRS involvement was minimal, inconsistent and occurred late in the incubation period in sheep heterozygous for arginine (R) at codon 171 (i.e. VRQ/ARR and ARQ/ARR). Despite this difference, all five groups were susceptible to infection and developed clinical disease, albeit with significantly different incubation periods (shortest in VRQ/VRQ and longest in ARQ/ARR sheep). The remaining group of ARR/ARR homozygous sheep did not show evidence of infection at the end of the experiment or at previous predetermined time points. As for LRS tissues, the sites of initial PrP(d) accumulation in the brain were determined immunohistochemically. These were the same in all susceptible sheep (except for ARR/ARR sheep), regardless of their Prnp genotype which, together with an early and consistent accumulation of PrP(d) in circumventricular organs and a late or inconsistent involvement of the enteric and autonomic nervous system and of the spinal cord, suggests neuroinvasion occurring via the blood. The neuropathological phenotype (PrP(d) profile in the central nervous system) of clinically affected sheep was similar in the three V136 carrier groups, but showed some differences in the two A136 homozygous groups, suggesting a codon 136-driven selection of different strains from the mixture contained in the inoculum. ARQ/ARR sheep showed an irregular distribution of brain PrP(d), contrasting with the more widespread distribution of the other four groups. The results indicate that (1) ARQ/ARR sheep are more susceptible to oral scrapie infection than would be predicted from incidence figures in natural disease, (2) amplification and accumulation of PrP(d) in LRS tissues is host genotype dependent, but does not necessarily have a marked effect on the outcome of the infection and (3) the neuropathological phenotype of scrapie is related to the host genotype, but possibly in combination with the infecting source.
Collapse
|
15
|
Komolka K, Ponsuksili S, Schwerin M. Healthy sheep that differ in scrapie associated PRNP genotypes exhibit significant differences of expression pattern associated with immune response and cell-to-cell signalling in retropharyngeal lymph nodes. Vet Immunol Immunopathol 2013; 152:370-80. [PMID: 23428361 DOI: 10.1016/j.vetimm.2013.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 11/28/2022]
Abstract
The present study was conducted to test the hypothesis whether prion protein gene (PRNP) associated scrapie susceptibility is connected with physiological changes in tissue involved in pathogen uptake, migration and propagation. Jejunum, ileal Peyer's patches, retropharyngeal lymph nodes, brain stem and liver of healthy and non scrapie-infected sheep with PRNP genotypes representing the scrapie risk class R1 (scrapie-resistant) and R5 (scrapie-susceptible), respectively, were comparatively analysed by microarray technology and quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Significantly higher expression levels of genes involved in immune response and cell communication pathways in retropharyngeal lymph nodes of R1 sheep in comparison with R5 animals strongly suggest PRNP associated physiological processes with impact as an early barrier in pathogen defence. Equal expression patterns in brain stem suggest no physiological differences in brain of healthy R1 and R5 animals. In addition, similar expression pattern in liver indicates that there are no transcriptional differences in genes of the hepatic energy metabolism between animals of scrapie classes R1 and R5.
Collapse
Affiliation(s)
- Katrin Komolka
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | |
Collapse
|
16
|
Meling S, Bårdsen K, Ulvund MJ. Presence of an acute phase response in sheep with clinical classical scrapie. BMC Vet Res 2012; 8:113. [PMID: 22805457 PMCID: PMC3410797 DOI: 10.1186/1746-6148-8-113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/17/2012] [Indexed: 01/08/2023] Open
Abstract
Background Work with experimental scrapie in sheep has been performed on-site for many years including studies on PrPSc dissemination and histopathology of organs and tissues both at preclinical and clinical stages. In this work serum was sampled at regular intervals from lambs which were infected immediately after birth and from parallel healthy controls, and examined for acute phase proteins. In contrast to earlier experiments, which extensively studied PrPSc dissemination and histopathology in peripheral tissues and brain, this experiment is focusing on examination of serum for non-PrPSc markers that discriminates the two groups, and give insight into other on-going processes detectable in serum samples. Results There was clear evidence of an acute phase response in sheep with clinical scrapie, both experimental and natural. All the three proteins, ceruloplasmin, haptoglobin and serum amyloid A, were increased at the clinical stage of scrapie. Conclusion There was evidence of a systemic measurable acute phase response at the clinical terminal end-stage of classical scrapie.
Collapse
Affiliation(s)
- Siv Meling
- Norwegian School of Veterinary Science, Department of Production Animal Clinical Sciences, Section for Small Ruminant Research, Kyrkjevegen 332-334, N-4325, Sandnes, Norway.
| | | | | |
Collapse
|
17
|
Sisó S, Chianini F, Eaton SL, Witz J, Hamilton S, Martin S, Finlayson J, Pang Y, Stewart P, Steele P, Dagleish MP, Goldmann W, Reid HW, Jeffrey M, Gonzalez L. Disease phenotype in sheep after infection with cloned murine scrapie strains. Prion 2012; 6:174-83. [PMID: 22421207 PMCID: PMC7082089 DOI: 10.4161/pri.18990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prion diseases exhibit different disease phenotypes in their natural hosts and when transmitted to rodents, and this variability is regarded as indicative of prion strain diversity. Phenotypic characterization of scrapie strains in sheep can be attempted by histological, immunohistochemical and biochemical approaches, but it is widely considered that strain confirmation and characterization requires rodent bioassay. Examples of scrapie strains obtained from original sheep isolates by serial passage in mice include ME7, 79A, 22A and 87V. In order to address aspects of prion strain stability across the species barrier, we transmitted the above murine strains to sheep of different breeds and susceptible Prnp genotypes. The experiment included 40 sheep dosed by the oral route alone and 36 sheep challenged by combined subcutaneous and intracerebral routes. Overall, the combined route produced higher attack rates (~100%) than the oral route (~50%) and 2-4 times shorter incubation periods. Uniquely, 87V given orally was unable to infect any sheep. Overall, scrapie strains adapted and cloned in mice produce distinct but variable disease phenotypes in sheep depending on breed or Prnp genotype. Further re-isolation experiments in mice are in progress in order to determine whether the original cloned murine disease phenotype will reemerge.
Collapse
Affiliation(s)
- Silvia Sisó
- Department of Pathology; Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade); Pentlands Science Park; Midlothian, UK,Current affiliation: Deptartments of Pathology, Microbiology and Immunology; University of California Davis; Davis, CA USA,Correspondence to: Silvia Sisó,
| | | | | | - Janey Witz
- Department of Pathology; Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade); Pentlands Science Park; Midlothian, UK
| | - Scott Hamilton
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | - Stuart Martin
- Department of Pathology; Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade); Pentlands Science Park; Midlothian, UK
| | - Jeanie Finlayson
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | - Yvonne Pang
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | | | - Philip Steele
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | - Mark P. Dagleish
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | | | - Hugh W. Reid
- Moredun Research Institute; Pentlands Science Park; Midlothian, UK
| | - Martin Jeffrey
- Department of Pathology; Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade); Pentlands Science Park; Midlothian, UK
| | - Lorenzo Gonzalez
- Department of Pathology; Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade); Pentlands Science Park; Midlothian, UK
| |
Collapse
|
18
|
Hamir AN, Kehrli ME, Kunkle RA, Greenlee JJ, Nicholson EM, Richt JA, Miller JM, Cutlip RC. Experimental interspecies transmission studies of the transmissible spongiform encephalopathies to cattle: comparison to bovine spongiform encephalopathy in cattle. J Vet Diagn Invest 2012; 23:407-20. [PMID: 21908269 DOI: 10.1177/1040638711403404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) of animals include scrapie of sheep and goats; transmissible mink encephalopathy (TME); chronic wasting disease (CWD) of deer, elk and moose; and bovine spongiform encephalopathy (BSE) of cattle. The emergence of BSE and its spread to human beings in the form of variant Creutzfeldt-Jakob disease (vCJD) resulted in interest in susceptibility of cattle to CWD, TME and scrapie. Experimental cross-species transmission of TSE agents provides valuable information for potential host ranges of known TSEs. Some interspecies transmission studies have been conducted by inoculating disease-causing prions intracerebrally (IC) rather than orally; the latter is generally effective in intraspecies transmission studies and is considered a natural route by which animals acquire TSEs. The "species barrier" concept for TSEs resulted from unsuccessful interspecies oral transmission attempts. Oral inoculation of prions mimics the natural disease pathogenesis route whereas IC inoculation is rather artificial; however, it is very efficient since it requires smaller dosage of inoculum, and typically results in higher attack rates and reduces incubation time compared to oral transmission. A species resistant to a TSE by IC inoculation would have negligible potential for successful oral transmission. To date, results indicate that cattle are susceptible to IC inoculation of scrapie, TME, and CWD but it is only when inoculated with TME do they develop spongiform lesions or clinical disease similar to BSE. Importantly, cattle are resistant to oral transmission of scrapie or CWD; susceptibility of cattle to oral transmission of TME is not yet determined.
Collapse
Affiliation(s)
- Amir N Hamir
- Virus and Prion Research Unit, National Animal Disease Center-USDA-Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Garza MC, Fernández-Borges N, Bolea R, Badiola JJ, Castilla J, Monleón E. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie. PLoS One 2011; 6:e27525. [PMID: 22194786 PMCID: PMC3237407 DOI: 10.1371/journal.pone.0027525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Rosa Bolea
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eva Monleón
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Producció Animal, Universitat de Lleida, LLeida, Spain
- * E-mail:
| |
Collapse
|
20
|
Enhancement of immunohistochemical staining of scrapie proteins and immune cells within lymph nodes of early scrapie-infected sheep. J Immunol Methods 2011; 371:1-7. [PMID: 21722647 DOI: 10.1016/j.jim.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are a group of fatal neurodegenerative diseases that affect animals as well as humans. The oldest of these diseases is Scrapie seen in sheep. Scrapie is caused by an altered form (PrP(sc)), capable of inducing "self-replication" of the normal host prion protein (PrP(c)). There is currently no universal standard for antigen retrieval when using immunohistochemistry to simultaneously stain the PrP(c) protein and other cellular markers. The use of formalin-fixed tissue creates a challenge by concealing the antigenic sites where an antibody would bind, and lengthy antigen retrieval methods must be applied in order to facilitate staining. Further complicating sheep tissue immunohistochemistry is a significant lack of commercial antibodies to sheep cell markers available in research. Here we developed a novel immunohistochemical technique using trypsin, formic acid, and hydrated autoclaving using citraconic anhydride buffer to increase sensitivity of staining for scrapie proteins and immune cell subsets. This allowed us to stain and identify cells within lymphoid tissue associated with early lymphoid pathogenesis in scrapie.
Collapse
|
21
|
Wemheuer WM, Benestad SL, Wrede A, Wemheuer WE, Brenig B, Bratberg B, Schulz-Schaeffer WJ. PrPSc spreading patterns in the brain of sheep linked to different prion types. Vet Res 2011; 42:32. [PMID: 21324114 PMCID: PMC3050706 DOI: 10.1186/1297-9716-42-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/15/2011] [Indexed: 11/17/2022] Open
Abstract
Scrapie in sheep and goats has been known for more than 250 years and belongs nowadays to the so-called prion diseases that also include e.g. bovine spongiform encephalopathy in cattle (BSE) and Creutzfeldt-Jakob disease in humans. According to the prion hypothesis, the pathological isoform (PrPSc) of the cellular prion protein (PrPc) comprises the essential, if not exclusive, component of the transmissible agent. Currently, two types of scrapie disease are known - classical and atypical/Nor98 scrapie. In the present study we examine 24 cases of classical and 25 cases of atypical/Nor98 scrapie with the sensitive PET blot method and validate the results with conventional immunohistochemistry. The sequential detection of PrPSc aggregates in the CNS of classical scrapie sheep implies that after neuroinvasion a spread from spinal cord and obex to the cerebellum, diencephalon and frontal cortex via the rostral brainstem takes place. We categorize the spread of PrPSc into four stages: the CNS entry stage, the brainstem stage, the cruciate sulcus stage and finally the basal ganglia stage. Such a sequential development of PrPSc was not detectable upon analysis of the present atypical/Nor98 scrapie cases. PrPSc distribution in one case of atypical/Nor98 scrapie in a presumably early disease phase suggests that the spread of PrPSc aggregates starts in the di- or telencephalon. In addition to the spontaneous generation of PrPSc, an uptake of the infectious agent into the brain, that bypasses the brainstem and starts its accumulation in the thalamus, needs to be taken into consideration for atypical/Nor98 scrapie.
Collapse
Affiliation(s)
- Wiebke M Wemheuer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center, Georg-August University, Robert-Koch Str, 40, 37075 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Simmons MM, Spiropoulos J, Webb PR, Spencer YI, Czub S, Mueller R, Davis A, Arnold ME, Marsh S, Hawkins SAC, Cooper JA, Konold T, Wells GAH. Experimental classical bovine spongiform encephalopathy: definition and progression of neural PrP immunolabeling in relation to diagnosis and disease controls. Vet Pathol 2010; 48:948-63. [PMID: 21078883 DOI: 10.1177/0300985810387072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissues from sequential-kill time course studies of bovine spongiform encephalopathy (BSE) were examined to define PrP immunohistochemical labeling forms and map disease-specific labeling over the disease course after oral exposure to the BSE agent at two dose levels. Study was confined to brainstem, spinal cord, and certain peripheral nervous system ganglia-tissues implicated in pathogenesis and diagnosis or disease control strategies. Disease-specific labeling in the brainstem in 39 of 220 test animals showed the forms and patterns observed in natural disease and invariably preceded spongiform changes. A precise temporal pattern of increase in labeling was not apparent, but labeling was generally most widespread in clinical cases, and it always involved neuroanatomic locations in the medulla oblongata. In two cases, sparse labeling was confined to one or more neuroanatomic nuclei of the medulla oblongata. When involved, the spinal cord was affected at all levels, providing no indication of temporal spread within the cord axis or relative to the brainstem. Where minimal PrP labeling occurred in the thoracic spinal cord, it was consistent with initial involvement of general visceral efferent neurons. Labeling of ganglia involved only sensory ganglia and only when PrP was present in the brainstem and spinal cord. These experimental transmissions mimicked the neuropathologic findings in BSE-C field cases, independent of dose of agent or stage of disease. The model supports current diagnostic sampling approaches and control measures for the removal and destruction of nervous system tissues in slaughtered cattle.
Collapse
Affiliation(s)
- M M Simmons
- Department of Pathology, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gough KC, Maddison BC. Prion transmission: prion excretion and occurrence in the environment. Prion 2010; 4:275-82. [PMID: 20948292 DOI: 10.4161/pri.4.4.13678] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrP(Sc) and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of "uptake of prion from the environment--widespread in vivo prion dissemination--prion excretion--prion persistence in the environment" is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK.
| | | |
Collapse
|
24
|
An assessment of the efficiency of PrPsc detection in rectal mucosa and third-eyelid biopsies from animals infected with scrapie. Vet Microbiol 2010; 147:237-43. [PMID: 20685048 DOI: 10.1016/j.vetmic.2010.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 12/30/2022]
Abstract
In classical scrapie, detection of PrPsc on lymphoreticular system is used for the in vivo and post mortem diagnosis of the disease. However, the sensitivity of this methodology is not well characterised because the magnitude and duration of lymphoid tissue involvement can vary considerably. The aim of the present study was to evaluate the efficiency of detecting PrPsc in rectal mucosa and third-eyelid biopsies. A total of 474 genetically susceptible sheep and 24 goats from three scrapie infected flocks were included in this study. A sample from rectal mucosa and a sample from third-eyelid lymphoid tissue were collected from each animal. Biopsy samples were fixed in formaldehyde and processed for immunohistochemical examination. Animals with negative biopsy results were studied more closely through a post mortem examination of central nervous and lymphoreticular systems and if there was a positive result, additional biopsy sections were further tested. The sensitivity of rectal mucosa and third-eyelid assays were 36% and 40% respectively on initial examination but increased to 48% and 44% respectively after retesting. The results of this field study show a high percentage of infected animals that do not have detectable levels of PrPsc in the biopsied lymphoid tissue, due mainly to the relatively high number of animals with minimal or no involvement of lymphoid tissue in the pathogenesis of the disease.
Collapse
|
25
|
Santucciu C, Maestrale C, Madau L, Attene S, Cancedda MG, Demontis F, Tilocca MG, Saba M, Macciocu S, Carta A, Ligios C. Association of N176K and L141F dimorphisms of the PRNP gene with lack of pathological prion protein deposition in placentas of naturally and experimentally scrapie-affected ARQ/ARQ sheep. J Gen Virol 2010; 91:2402-7. [PMID: 20463148 DOI: 10.1099/vir.0.021188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is important in the horizontal transmission of the aetiological agent in scrapie-affected sheep. It has been demonstrated that the placentas of fetuses carrying the dimorphism Q171R of the PRNP gene is resistant to pathological prion protein (PrP(Sc)) accumulation in the placenta. To test whether other PRNP polymorphisms are associated with a lack of placental PrP(Sc) deposition, we carried out a study on 26 naturally and 11 experimentally scrapie-affected ewes with or without clinical signs. PrP(Sc) was detected in the placenta of ARQ/ARQ(wild type) fetuses by Western blot and immunohistochemical analysis, but not in ARQN(176)/ARQK(176) or, as expected, ARQ/ARR samples. Furthermore, three of four AL(141)RQ/AF(141)RQ placentas were also PrP(Sc) negative, suggesting that the dimorphism at codon 141 may also mediate placental deposition of PrP(Sc). This finding demonstrates for the first time that fetal PRNP polymorphisms, other than those at codon 171, are associated with the lack of placental deposition of PrP(Sc).
Collapse
Affiliation(s)
- Cinzia Santucciu
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kipanyula M, Chuma I, Brundtland E, Bårdsen K, Ulvund M. Prion protein (PrP) gene polymorphism in Red Maasai and Black Head Persian sheep breeds in Tanzania: Consistent profile regardless of locations. Small Rumin Res 2009. [DOI: 10.1016/j.smallrumres.2009.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Detection of PrPsc in blood from sheep infected with the scrapie and bovine spongiform encephalopathy agents. J Virol 2009; 83:12552-8. [PMID: 19740979 DOI: 10.1128/jvi.00311-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of blood in the iatrogenic transmission of transmissible spongiform encephalopathy (TSE) or prion disease has become an increasing concern since the reports of variant Creutzfeldt-Jakob disease (vCJD) transmission through blood transfusion from humans with subclinical infection. The development of highly sensitive rapid assays to screen for prion infection in blood is of high priority in order to facilitate the prevention of transmission via blood and blood products. In the present study we show that PrP(sc), a surrogate marker for TSE infection, can be detected in cells isolated from the blood from naturally and experimentally infected sheep by using a rapid ligand-based immunoassay. In sheep with clinical disease, PrP(sc) was detected in the blood of 55% of scrapie agent-infected animals (n = 80) and 71% of animals with bovine spongiform encephalopathy (n = 7). PrP(sc) was also detected several months before the onset of clinical signs in a subset of scrapie agent-infected sheep, followed from 3 months of age to clinical disease. This study confirms that PrP(sc) is associated with the cellular component of blood and can be detected in preclinical sheep by an immunoassay in the absence of in vitro or in vivo amplification.
Collapse
|
28
|
PrP expression, PrPSc accumulation and innervation of splenic compartments in sheep experimentally infected with scrapie. PLoS One 2009; 4:e6885. [PMID: 19727393 PMCID: PMC2731221 DOI: 10.1371/journal.pone.0006885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/01/2009] [Indexed: 12/01/2022] Open
Abstract
Background In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. Methodology/Principal Findings Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. Conclusions/Significance The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.
Collapse
|
29
|
Genotyping of the prion protein (PrP) gene in Red Maasai and Black Head Persian sheep in Tanzania. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2008.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Schneider DA, Yan H, Fry LM, Alverson J, White SN, O'Rourke KI. Myenteric neurons of the ileum that express somatostatin are a target of prion neuroinvasion in an alimentary model of sheep scrapie. Acta Neuropathol 2008; 115:651-61. [PMID: 18427817 DOI: 10.1007/s00401-008-0374-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 01/11/2023]
Abstract
Neuroinvasion of the enteric nervous system by prions is an important step in dissemination to the brain, yet very little is known about the basic process of enteric neuroinvasion. Using an alimentary model of neonatal disease transmission, neuroinvasion by scrapie prions in the ileum of lambs was detected by immunohistochemical staining for the disease-associated form of the prion protein, PrPSc. Odds ratios (OR) were determined for the frequency of PrPSc staining within enteric somata categorized by plexus location (myenteric, submucosal) and neurochemical staining (PGP 9.5, neural nitric oxide synthase, somatostatin, substance P, and vasoactive intestinal polypeptide). PrPSc was observed in 4.48 +/- 4.26% of myenteric neurons and 2.57 +/- 1.82% of submucosal neurons in five lambs aged 208-226 days but not in a lamb aged 138 days. The relative frequency of PrPSc within enteric somata was interdependent on plexus location and neurochemical type. Interestingly, PrPSc was observed more frequently within myenteric neurons than in submucosal neurons (PGP 9.5; OR = 1.72, 95% confidence interval = 1.21-2.44), and was observed within the myenteric plexus approximately 4x (2.16-6.94) more frequently in somatostatin neurons than in the general neural population stained by PGP 9.5. Nerve fibers stained for somatostatin were present in the mucosa and near PrPSc staining within Peyer's patches. The results suggest that somatostatin-expressing enteric neurons, with fiber projections near Peyer's patches, but with somata present in greatest proportion within the myenteric plexus, are an early target for neuroinvasion by scrapie prions and could serve an important role in neural dissemination.
Collapse
Affiliation(s)
- David A Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, 3003 ADBF, WSU, PO Box 646630, Pullman, WA 99164-6630, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Konold T, Bone G, Vidal-Diez A, Tortosa R, Davis A, Dexter G, Hill P, Jeffrey M, Simmons MM, Chaplin MJ, Bellworthy SJ, Berthelin-Baker C. Pruritus is a common feature in sheep infected with the BSE agent. BMC Vet Res 2008; 4:16. [PMID: 18445253 PMCID: PMC2390527 DOI: 10.1186/1746-6148-4-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist. Results Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16–20 weeks. Conclusion Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route of inoculation and whether BSE was passed into sheep from cattle or from other sheep, suggesting that the clinical phenotype of BSE is influenced by the TSE strain more than by other factors. The clinical phenotype of BSE in the genotypes and breed studied was indistinguishable from that described for classical scrapie cases.
Collapse
Affiliation(s)
- Timm Konold
- Veterinary Laboratories Agency Weybridge, Woodham Lane, Addlestone, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
McKay JT, Brigner TA, Caplin BE, McCurdy KS, Forde RL. A real-time polymerase chain reaction assay to detect single nucleotide polymorphisms at codon 171 in the prion gene for the genotyping of scrapie susceptibility in sheep. J Vet Diagn Invest 2008; 20:209-12. [PMID: 18319434 DOI: 10.1177/104063870802000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to report a reliable real-time polymerase chain reaction assay compatible with the Roche LightCycler 2.0 capable of genotyping sheep for scrapie susceptibility at codon 171. The single nucleotide polymorphisms (SNPs) in the prion protein gene in sheep that may govern resistance to scrapie at codon 171 encode for lysine (K), histidine (H), glutamine (Q), and arginine (R). A modified proteinase K method for leukocytes or whole blood was used to isolate genomic DNA from sheep blood. Fluoresentric developed and optimized primers and probes for the codon 171 SNP assay. The assay was initially validated using 218 determinations from whole blood of known genotypes with 100% correct identity. The assay was further validated through a whole-blood check test provided annually by the National Veterinary Services Laboratory with a correct identification rate of 100%. From January 2005 to December 2006, 3,672 samples from blood were genotyped at codon 171. The genotypes were QR(171) (n = 1,838, 50.05%), RR(171) (n = 1,423, 38.75%), QQ(171) (n = 407, 11.08%), HR(171) (n = 2, 0.05%), and HQ(171) (n = 2, 0.05%). The combination of this simple extraction method and the novel Fluoresentric assay is very accurate, is capable of identifying all 4 SNPs at codon 171 in one reaction, and has proven to be a useful tool for producers in their selective breeding programs.
Collapse
Affiliation(s)
- Jerome T McKay
- Colorado Department of Agriculture, Rocky Mountain Regional Animal Health Laboratory, 2331 West 31st Avenue, Denver, CO 80211, USA.
| | | | | | | | | |
Collapse
|
34
|
Seuberlich T, Botteron C, Benestad SL, Brünisholz H, Wyss R, Kihm U, Schwermer H, Friess M, Nicolier A, Heim D, Zurbriggen A. Atypical scrapie in a Swiss goat and implications for transmissible spongiform encephalopathy surveillance. J Vet Diagn Invest 2007; 19:2-8. [PMID: 17459826 DOI: 10.1177/104063870701900102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.
Collapse
Affiliation(s)
- Torsten Seuberlich
- NeuroCenter, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Austbø L, Espenes A, Olsaker I, Press CM, Skretting G. Increased PrP mRNA expression in lymphoid follicles of the ileal Peyer's patch of sheep experimentally exposed to the scrapie agent. J Gen Virol 2007; 88:2083-2090. [PMID: 17554044 DOI: 10.1099/vir.0.82791-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
To understand the functional role of cellular prion protein (PrP(C)) in the initiation and maintenance of prion disease within the host, it is important to obtain a more detailed understanding of PrP(C) transcription in tissues during the development of disease. Using an experimental model with oral infection, we examined the effect of scrapie and the accumulation of the scrapie related form of the prion protein (PrP(Sc)) on the expression level of PrP mRNA in the ileal Peyer's patch of sheep. In the early phase of infection, prior to PrP(Sc) accumulation, no effect on the PrP expression was detected. However, it was found that lambs with PrP genotypes associated with high susceptibility for scrapie generally had higher PrP mRNA levels than lambs with less susceptible genotypes. Further, in highly susceptible VRQ/VRQ sheep at a stage of disease with high accumulation of PrP(Sc), real-time RT-PCR and microdissection were used to investigate levels of PrP mRNA in four different tissue compartments. An increased level of PrP mRNA was found in lymphoid follicles of infected sheep compared with controls, indicating upregulation of PrP expression in the follicles to compensate for the loss of PrP(C) converted to PrP(Sc), or that PrP(Sc) accumulation directly or indirectly influences the PrP expression. Still, the PrP expression level in the follicles was low compared with the other compartments investigated, suggesting that although increased PrP expression could contribute to PrP(Sc) accumulation, other factors are also important in the processes leading to accumulation of PrP(Sc) in the follicles.
Collapse
Affiliation(s)
- Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Charles McL Press
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Grethe Skretting
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| |
Collapse
|
36
|
Beekes M, McBride PA. The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J 2007; 274:588-605. [PMID: 17288548 DOI: 10.1111/j.1742-4658.2007.05631.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that are caused by unconventional pathogens and affect the central nervous system of animals and humans. Several different forms of these diseases result from natural infection (i.e. exposure to transmissible spongiform encephalopathy agents or prions, present in the natural environment of the respective host). This holds true also for scrapie in sheep, bovine spongiform encephalopathy in cattle, chronic wasting disease in elk and deer, or variant Creutzfeldt-Jakob disease in humans, all of which are assumed to originate predominantly from peroral prion infection. This article intends to provide an overview of the current state of knowledge on the spread of scrapie, chronic wasting disease, bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease agents through the body in naturally affected hosts, and in model animals experimentally challenged via the alimentary tract. Special attention is given to the tissue components and spreading pathways involved in the key stages of prion routing through the body, such as intestinal uptake, neuroinvasion of nerves and the central nervous system, and centrifugal spread from the brain and spinal cord to peripheral sites (e.g. sensory ganglia or muscles). The elucidation of the pathways and mechanisms by which prions invade a host and spread through the organism can contribute to efficient infection control strategies and the improvement of transmissible spongiform encephalopathy diagnostics. It may also help to identify prophylactic or therapeutic approaches that would impede naturally acquired transmissible spongiform encephalopathy infections.
Collapse
Affiliation(s)
- Michael Beekes
- Robert Koch-Institut (P24 - Transmissible Spongiforme Enzephalopathien), Berlin, Germany.
| | | |
Collapse
|
37
|
Langeveld JPM, Jacobs JG, Erkens JHF, Bossers A, van Zijderveld FG, van Keulen LJM. Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet Res 2006; 2:19. [PMID: 16764717 PMCID: PMC1544330 DOI: 10.1186/1746-6148-2-19] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/09/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE). With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN) are considered suitable organs for testing. Western blotting (WB) of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE. In this report, WB is developed for rapid diagnosis in RLN and to study biochemical characteristics of PrPres. RESULTS Optimal PrPres detection in RLN by WB was achieved by proper tissue processing, antibody choice and inclusion of a step for PrPresconcentration. The analyses were performed on three different sheep sources. Firstly, in a study with preclinical scrapie cases, WB of RLN from infected sheep of VRQ/VRQ genotype--VRQ represents, respectively, polymorphic PrP amino acids 136, 154, and 171--allowed a diagnosis 14 mo earlier compared to WB of brain stem. Secondly, samples collected from sheep with confirmed scrapie in the course of passive and active surveillance programmes in the period 2002-2003 yielded positive results depending on genotype: all sheep with genotypes ARH/VRQ, VRQ/VRQ, and ARQ/VRQ scored positive for PrPres, but ARQ/ARQ and ARR/VRQ were not all positive. Thirdly, in an experimental BSE study, detection of PrPres in all 11 ARQ/ARQ sheep, including 7 preclinical cases, was possible. In all instances, WB and IHC were almost as sensitive. Moreover, BSE infection could be discriminated from scrapie infection by faster electrophoretic migration of the PrPres bands. Using dual antibody staining with selected monoclonal antibodies like 12B2 and L42, these differences in migration could be employed for an unequivocal differentiation between BSE and scrapie. With respect to glycosylation of PrPres, BSE cases exhibited a greater diglycosylated fraction than scrapie cases. Furthermore, a slight time dependent increase of diglycosylated PrPres was noted between individual sheep, which was remarkable in that it occurred in both scrapie and BSE study. CONCLUSION The present data indicate that, used in conjunction with testing in brain, WB of RLN can be a sensitive tool for improving surveillance of scrapie and BSE, allowing early detection of BSE and scrapie and thereby ensuring safer sheep and goat products.
Collapse
Affiliation(s)
- Jan PM Langeveld
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Jorg G Jacobs
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Jo HF Erkens
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Alex Bossers
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Fred G van Zijderveld
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Lucien JM van Keulen
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| |
Collapse
|
38
|
Ironside JW, Bishop MT, Connolly K, Hegazy D, Lowrie S, Le Grice M, Ritchie DL, McCardle LM, Hilton DA. Variant Creutzfeldt-Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. BMJ 2006; 332:1186-8. [PMID: 16606639 PMCID: PMC1463905 DOI: 10.1136/bmj.38804.511644.55] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To perform prion protein gene (PRNP) codon 129 analysis in DNA extracted from appendix tissue samples that had tested positive for disease associated prion protein. DESIGN Reanalysis of positive cases identified in a retrospective anonymised unlinked prevalence study of variant Creutzfeldt-Jakob disease (vCJD) in the United Kingdom. STUDY SAMPLES Three positive appendix tissue samples out of 12,674 samples of appendix and tonsil tested for disease associated prion protein. The patients from whom these samples were obtained were aged 20-29 years at the time of surgery, which took place in 1996-9. SETTING Pathology departments in two tertiary centres in England and Scotland. RESULTS Adequate DNA was available for analysis in two of the three specimens, both of which were homozygous for valine at codon 129 in the PRNP. CONCLUSIONS This is the first indication that the valine homozygous subgroup at codon 129 in the PRNP is susceptible to vCJD infection. All tested clinical cases of vCJD have so far occurred in the methionine homozygous subgroup, and a single case of probable iatrogenic vCJD infection has been identified in one patient who was a methionine/valine heterozygote at this genetic locus. People infected with vCJD with a valine homozygous codon 129 PRNP genotype may have a prolonged incubation period, during which horizontal spread of the infection could occur either from blood donations or from contaminated surgical instruments used on these individuals during the asymptomatic phase of the illness.
Collapse
Affiliation(s)
- James W Ironside
- National Creutzfeldt-Jakob Disease Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU. [corrected]
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ligios C, Cancedda MG, Madau L, Santucciu C, Maestrale C, Agrimi U, Ru G, Di Guardo G. PrP(Sc) deposition in nervous tissues without lymphoid tissue involvement is frequently found in ARQ/ARQ Sarda breed sheep preclinically affected with natural scrapie. Arch Virol 2006; 151:2007-20. [PMID: 16625322 DOI: 10.1007/s00705-006-0759-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
The pathogenesis of natural scrapie in Sarda breed sheep was investigated in 1050 asymptomatic and 49 sick sheep from scrapie-affected flocks. Central and peripheral nervous system, along with lymphoreticular system (LRS) tissues, were subjected to immunohistochemistry (IHC) and Western-blotting (WB) for detection of pathological isoform of the prion protein (PrP(Sc)). A total of 69 of the 1050 clinically healthy sheep were found to be infected with scrapie, with PrP(Sc) being detected in both the central nervous system (CNS) and enteric nervous system (ENS) plexuses of 60 of the sheep, while IHC and WB yielded evidence of (PrP(Sc)) deposition only in lymphoid tissues of the remaining 9 clinically healthy sheep. PrP(Sc) was also detected in the CNS, as well as in ENS plexuses from all of the 49 clinically affected sheep. Nevertheless, 18 of the 69 clinically healthy animals (26%, 17 ARQ/ARQ and 1 ARQ/AHQ sheep), along with 3 ARQ/ARQ sheep (6%) of the clinically affected group, showed no IHC or WB evidence of PrP(Sc) in lymphoid tissues, but PrP(Sc) could be still detected in their CNS and ENS plexuses. The study demonstrates dual CNS and ENS PrP(Sc) deposition in Sarda sheep with scrapie, in spite of an apparent lack of lymphoid tissue involvement in a number of cases.
Collapse
Affiliation(s)
- C Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Espenes A, Press CM, Landsverk T, Tranulis MA, Aleksandersen M, Gunnes G, Benestad SL, Fuglestveit R, Ulvund MJ. Detection of PrPSc in Rectal Biopsy and Necropsy Samples from Sheep with Experimental Scrapie. J Comp Pathol 2006; 134:115-25. [PMID: 16466737 DOI: 10.1016/j.jcpa.2005.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Scrapie diagnosis is based on the demonstration of disease-associated prion protein (PrP(Sc)) in brain or, in the live animal, in readily accessible peripheral lymphoid tissue. Lymphatic tissues present at the rectoanal line were readily obtained from sheep without the need for anaesthesia. The presence of PrP(Sc) in such tissue was investigated in sheep infected orally with scrapie-infected brain material. The methods used consisted of immunohistochemistry and histoblotting on biopsy and post-mortem material. PrP(Sc) was detected in animals with PrP genotypes associated with high susceptibility to scrapie from 10 months after infection, i.e., from about the time of appearance of early clinical signs. In the rectal mucosa, PrP(Sc) was found in lymphoid follicles and in cells scattered in the lamina propria, often near and sometimes in the crypt epithelium. By Western blotting, PrP(Sc) was detected in rectal biopsy samples of sheep with the PrP genotype VRQ/VRQ, after electrophoresis of material equivalent to 8 mg of tissue. This study indicated that rectal biopsy samples should prove useful for the diagnosis of scrapie in sheep.
Collapse
Affiliation(s)
- A Espenes
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Opinion of the Scientific Panel on biological hazards (BIOHAZ) on: “A quantitative assessment of risk posed to humans by tissues of small ruminants in case BSE is present in these animal populations”. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|